

NAGARJUNA

COLLEGE OF ENGINEERING & TECHNOLOGY

An Autonomous Institute under VTU

Vision

Leadership and Excellence in Education

Mission

To fulfill the vision by imparting total quality education replete with the philosophy of blending human values and academic professionalism.

Scheme and Syllabus

2nd Semester B.E Physics Cycle

Academic Year

2023-24

Physics Cycle – CSE Stream

			Second Se	emester Physi	cs Cyc	le CS	E Stream	m					
					Teac	hing l	Hours/w	veek		Exami	nation		
Sl. No.	Course &	Course code	Course Title	TD /PSB	Theory Lecture	Tutorial	Practical/ Drawing	SDA	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
					L	Т	Р	S	Durati hours	CIE	SEF	Tot	Cre
1	*ASC(IC)	23MATS21	Advanced Calculus And Numerical Methods For CSE Stream	Maths	2	2	2	0	03	50	50	100	04
2	#ASC(IC)	23PHYS22	Applied Physics for CSE	Physics	2	2	2	0	03	50	50	100	04
3	ESC	23POP23	Principles of Programming using C	CSE	2	0	2	0	03	50	50	100	03
	ESC-1	23ESC241	Introduction to Civil Engineering	CV	3	0	0	0	03				
4		1		OR						50	50	100	03
	ESC-1	23ESC244	Introduction to Mechanical Engineering	ME	3	0	0	0	03				
5	ETC-1	23ETC25F	Waste Management	CSE	3	0	0	0	03	50	50	100	03
6	AEC	23ENG26	Communicative English	Humanities	1	0	0	0	01	50	50	100	01
7	HSMC	23KSK27	Samskrutika Kannada	Humanities	1	0	0	0	01	50	50	100	01
,		23KBK27	Balake Kannada	1011011005	1							100	01
8	AEC	23IDT28	Innovation and Design Thinking	Any Dept.	1	0	0	0	01	50	50	100	01
				TOTAL						400	400	800	20

SDA-Skill development Activities, TD/PSB – Teaching Department / Paper setting board, ASC-Applied Science course, ESC-Engineering Science Course, ETC-Emerging Technology Course, AEC-Ability Enhancement Course, HSMS – Humanity and Social Science and management Course, SDC-Skill development Course, CIE- Continous Internal Evaluation, SEE-Semester end Examination, IC-Integrated Course (Theory Course Integrated with Practical Course)

II SEMESTER

Course Title		CULUS AND NUMERICAL Mence and Engineering Stream.	IETHODS	
Course Code		23MATS21	CIE Marks	50
Course Type		Integrated	SEE Marks	50
Teaching Hours/Week (L: T: P: S)		2:2:2:0	Total Marks	100
Total Hours of Pedagogy	Theory	40 hours	Exam Hours	03
	Practical	10 to 12 slots	Credits	04

Course objectives:

The goal of the course Advanced Calculus and Numerical Methods (22MATS21) is to,

- Familiarize the students with a concrete foundation of vector calculus.
- Acquire the knowledge of numerical methods enabling them to develop the software in Computer Science and Engineering.
- Facilitate with the higher order linear differential equations and analyze the applications of Partial Differential Equations in Computer Science and Engineering.

Teaching-Learning Process (General Instructions).

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- **3.** Support and guide the students for self–study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1 08 Hours.

Vector Calculus:

Introduction to Vector Calculus in Computer Science and Engineering applications. Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, curl and divergence – physical interpretation, solenoidal and irrotational vector fields. Problems. Vector Integration: Line integrals, Applications to work done by a force. Definition of surface integral. Statement of Green's theorem and Stoke's theorem. Problems.

[Text 1: 8.4, 8.5, 8.6, 8.7, 8.11, 8.13, 8.14]

[RBT Levels: L1, L2 and L3]

Self-Study: Volume integral and Gauss divergence theorem.

Applications: Computer graphics, Computer vision, Flight simulation, Data structure and Machine

learning project.

	Module-2	08 Hours.
Numerical methods I:		
Importance of numerical methods in the field Solution of algebraic and transcendental equat (only formulae). Problems.		
Interpolation: Finite differences, Interpolation us interpolation formula (All formulae without proof Numerical integration: Trapezoidal, Simpson's (f). Problems.	
[Text 1: 28.1, 28.2, 29.1, 29.6, 29.10, 30.4, 30.6, [RBT Levels: L1, L2 and L3] Self-Study: Bisection method and Lagrange's inv Applications: Estimating the approximate roots, Scientific computing, machine learning, compute	verse Interpolation. extremum values, Area, volume, surfa	ce area. Errors in finite precision.
	Module-3	08 Hours.
Introduction to various numerical techniques f Numerical solution of ordinarydifferential eq Modified Euler'smethod, Runge-Kutta method of formulae). Problems. [Text 1: 32.1, 32.3, 32.5, 32.7, 32.9]	uations(ODE's) of first order and	first degree: Taylor's series method
[RBT Levels: L1, L2 and L3] Self-Study: Adam-Bashforth method.		
Applications: Finding approximate solutions to C		× ·
Differential equations of higher order:	Module-4	08 Hours.
Importance of higher-order ordinary different		
Higher-order linear ODE's with constant co for e^{ax} , sin ax, cos ax, x^m only), method of van differential equations. Problems.		C C
[Text 1: 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.8,	13.9]	
[RBT Levels: L1, L2 and L3] Self-Study: Finding the solution by the method circuit problems.	of undetermined coefficients. Analysi	s of electrical
Applications: Creating software's, creating game	es, constraint logic programming, Artifi	cial Intelligence and Net working.
	Module-5	08 Hours.
Partial Differential Equations(PDE's):		
Importance of partial differential equations fo Formation of PDE's by elimination of arbitrary co		
direct integration. Homogeneous PDEs involving	derivative with respect to one independ	dent variable only.
Solution of PDE by method of separation of varial	bles. Solution of one-dimensional heat	equation and wave
equation by the method of separation of variables	5.	
[RBT Levels: L1, L2 and L3]		
[RBT Levels: L1, L2 and L3] Self Study: Derivation of one-dimensional heat		
- , -		

List of Laboratory experiments (2 hours/week per batch/ batch strength 15)

10 lab sessions + 1 repetition class + 1 Lab Assessment.

1	Finding gradient, divergent, curl and their geometrical interpretation.
2	Verification of Green's theorem.
3	Solution of algebraic and transcendental equations by Regula-Falsi and Newton-Raphson method
4	Interpolation/Extrapolation using Newton's forward and backward difference Formula.
5	Computation of area under the curve using Trapezoidal, Simpson's $(1/3)^{rd}$ and $(3/8)^{th}$ rule.
6	Solution of ODE of first order and first degree by Taylor's series and Modified Euler's method.
7	Solution of ODE of first order and first degree by Runge-Kutta 4 th order and Milne's predictor-corrector method.
8	Solutions of Second order ordinary differential equations with initial/boundary conditions.
9	Solution of a differential equation of oscillations of a spring/deflection of a beam with different loads.
10	Solution of one-dimensional heat equation and wave equation.

Course Outcomes:

After successfully completing the course, the students will be able to:

- 1. Understand the applications of vector calculus refer to solenoidal, irrotational vectors, line integral and surface integral.
- 2. Apply the knowledge of numerical methods in solving physical and engineering problems.
- 3. Obtain the solution of higher order ordinary differential equations.
- 4. Analyze Electronics and communication engineering problems applying Partial Differential Equations.
- 5. Get familiarize with modern mathematical tools by PHYTHON software.

Assessment Details (both CIE and SEE)

Evalu	ation Type	Component	Max Marks	Marks Reduced to	Min. Marks	Evaluation Details
	Internal Assessment	IAT-1	25	15		Average of two IATs,
Theory	Tests(IAT)	IAT-2	25	15		Scaled down to 15 marks
Component	Comprehensive	CCE-1	10]	Any two Assessment met as per 22OB4.2 of
	Continuous Evaluations (CCE)	CCE-2	10	10	10	regulations, Average of two CCEs, scaled Down to 10marks
	Total CIE -T	heory		25	10	Scale down marks of IAT and CCE to25
Laboratory Component	Practicaland Lab Record	-	15			Conduction of experiments and preparation of Lab records, etc
	Lab Test	50	10	25	10	One test to be conducted after the completion of All lab experiments.
	Total CIE –Pra	actical		25	10	
Tot	al CIE (Theory + La	lb)		50	20	
	SEE		100	50	18	Conducted for 100 marks and scaled down to 50.
	CIE + SEE			100	40	

Suggested Learning Resources:

Text Books:

- 1. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2018.
- **2. E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016.

Reference Books:

- 1. B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Reprint, 2016.
- 3.N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022...
- **4. C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw Hill Book Co. Newyork, 6th Ed., 2017.
- 5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 6. H.K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S.Chand Publication 3rd Ed., 2014.
- 7. James Stewart: "Calculus" Cengage publications, 7th edition, 4th Reprint 2019.

E-Resources:

- <u>http://.ac.in/courses.php?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- <u>http://academicearth.org/</u>
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

CO- PO Mapping :

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
23MATS21.1	2	1										
23MATS21.2	3	2	2									1
23MATS21.3	3	3										
23MATS21.4	3	2										
23MATS21.5	1	2			3							
Level 3- Highly N	/Iapped,	Level 2	2-Mode	rately M	lapped,	Leve	l 1-Low	Mapped,	Leve	l 0- Not M	Iapped	

Course Title:		Applied Physics for Computer	· Science Engineering	
Course Code:		23PHYS12/22	CCE Marks	50
Course Type	a created)	Integrated	SEE Marks Total Marks	50 100
(Theory/Practical/Int Teaching Hours/Wee		2:2:2:0	Exam Hours	03+02
Total Hours of Pedag		$\frac{2.2.2.0}{40 \text{ hours Theory} + 10 \text{ to } 12 \text{ Lab slope}}$		04
Course objectives	5°6)			0.
To study the	e essentials of photon	ics for engineering applications.		
To understa	nd the types of oscilla	ation, shock waves & its generation,	and applications.	
To study the	e principles of quantu	m mechanics and its applications in	quantum computing.	
• To study the	e electrical properties	of materials.		
-		for computational aspects like desig	gn and data analysis.	
Teaching-Learning		1 1 0	, ,	
		rs can use to accelerate the attainment	nt of the various course of	outcomes andmake
Teaching-Learning n	nore effective			
1. Flipped Cla	SS			
2. Chalk and T	Talk			
3. Blended Mo	ode of Learning			
4. Simulations	, Interactive Simulati	ons and Animations		
5. NPTEL and	Other Videos for the	cory topics		
6. Smart Class	Room			
7. Lab Experir	nent Videos			
_		Module-1 (8 Hours)		
Laser and Optical F	ibers:			
LASER: Basic prop	perties of a LASER	beam, Interaction of Radiation with	th Matter, Einstein's A	and B Coefficients
(derivation of expres	sion for energy dens	ity), Laser Action, Population Inver	rsion, Metastable State,	Requisites of a laser
system, Nd-YAG La	ser, Application of La	asers.		-
Optical Fiber : Princ	iple and structure, Ad	cceptance angle and Numerical Aper	rture (NA) and derivation	n of Expression for
NA, Classification	of Optical Fibers,	Attenuation and Fiber Losses, Ap	pplications: Fiber Opti	c Communication.
Numerical Problems				
Pre-requisite: Prop	erties of light			
Self-learning: Total	Internal Reflection	& Propagation Mechanism (Optio	cal Fibers)	
		Module-2 (8 Hours)		
Quantum Mechanic	es:			
•		wes, Photoelectric Effect, Compto	on Scattering, Dual na	ture, Heisenberg's
		Non-existence of electron inside the	-	-
• 1	11	ation (derivation), Physical Signif		
-		ues, Particle inside one-dimension		•
Probabilities. Numer	U		1	
Pre-requisite: Wave	-			
Self-learning: de Br				
		Module-3 (8 Hours)		
Oscillations and Wa	aves			
		of equation for SHM, Equation of mo	ation for free oscillations	Natural frequency
of oscillations.	or sinvi, derivation e	of equation for STIW, Equation of Inc	bion for nee oscillations	, Natural frequency
	s. Theory of dampo	d oscillations (derivation), over dan	nning critical & under	damping (graphical
representation), quali	• •	d oscillations (derivation), over dan	nping, critical & under	damping (graphical
	•	cillations (derivation).		
		of Shock waves, Construction and w	orking of Reddy shock t	ube, applications of
shock waves, Numer		und w	or reducy shoek t	
Pre-requisites: Basic	-			
		differential equation for SHM		
son rourning, onnpre		Module-4 (8 Hours)		

Electrical Properties of Materials and Applications

Free Electron concept, Electrical conductivity in metals, Resistivity and Mobility, Concept of Phonon, Matthiessen's rule. Introduction to Super Conductors, Temperature dependence of resistivity, Meissner's Effect, Silsbee Effect, Types of Superconductors, Temperature dependence of critical field, BCS theory (Qualitative), Quantum Tunneling, High-Temperature superconductivity, Josephson Junction, DC and AC SQUIDs (Qualitative), MAGLEV, Applications in Quantum Computing (Mention). Numerical problems.

Pre-requisites: Basics of Electrical conductivity Self-learning: Resistivity and Mobility

Module-5 (8 hours)

Quantum Computing:

Wave Function in Ket Notation: Matrix form of wave function, Identity Operator, Determination of I|0> and I|1>, Pauli Matrices and its operations on 0 and 1 states, Mention of Conjugate and Transpose, Unitary Matrix U, Examples: Row and Column Matrices and their multiplication (Inner Product), Probability, Orthogonality

Principles of Quantum Information & Quantum Computing: Introduction to Quantum Computing, Moore's law & its end. Single particle quantum interference, Classical & quantum information comparison. Differences between classical & quantum computing, quantum superposition and the concept of qubit.

Properties of a qubit: Mathematical representation. Summation of probabilities, Representation of qubit by Bloch sphere **Quantum Gates:** Single Qubit Gates:Quantum Not Gate, Pauli -Z Gate Hadamard Gate, Pauli Matrices, Phase Gate (or S Gate), T Gate

Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states). Representation of, Swap Gate, Controlled-Z Gate, Toffoli Gate, Accounting for the extra-ordinary capability of quantum computing, Model Realizations.

Pre-requisites: Matrices. Self-learning: Moore's law

Laboratory Component:

- a) Exercise
- b) Demonstration (DM)
- c) Virtual Lab (VL)
- d) Open Ended (OE)

List of Experiments:

- 1. Wavelength of LASER using Grating
- 2. Charging and Discharging of a Capacitor
- 3. Series LCR
- 4. Parallel LCR
- 5. Photo-Diode Characteristics
- 6. Black Box (DM)
- 7. Fermi Energy (DM)
- 8. Four Probe Method (VL)
- 9. Numerical Aperture using Optical fiber (VL)
- 10. Planck's Constant using LEDs (OE)

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Understand the fundamentals of photonics, oscillation, waves, quantum mechanics, computing and material properties.
CO2	Apply the concept of photonics, oscillation, waves, quantum mechanics, computing and transport phenomena in metals.
CO3	Determine the desired parameters for to use it in various engineering applications.
CO4	Usage of Modern tools to develop the concept of physics & to perform as a member of team to build a model.

CO5

Evaluat	ion Type	Compon ent	Max. Mar ks	Marks reduced to	Min. Marks	Evaluation Details
	Internal Assessment	IAT - 1 IAT - 2	25 25	15		Average of two IATs, Scaled down to 15 marks
Theory	Test(IAT) Comprehen	CCE -1	10		10	Minimum of two Assessments
Component	sive Continuous Evaluations (CCE)	CCE -2	10	10	10	methods as per 22OB4.2 of regulations. Average of CCEs, scaled down to 10marks.
	Total CIE -	Theory		25	10	Scale down marks of IAT & CCE to 25
Laboratory Component	Practical and Lab Records	-	15	25	10	Conduction of experiments and preparation of Lab records, etc.
	Lab test	50	10	25	10	One test to be conducted after the completion of all lab experiments.
	Total CIE –	Practicals		25	10	
Total C	CIE (Theory + L	.ab)		50	20	
	SEE		100	50	18	Conduction of 100 marks and scaled down to 50.
	CIE + SEE			100	40	

Assessment Details (both CCE and SEE)

The minimum marks to be secured in CIE to appear for SEE shall be 10(40% of minimum marks: 25) in theory component and 10(40% of maximum marks: 25) in the practical component. The laboratory component of the IPCC/Integrated course shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included in the question paper.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Solid State Physics, S O Pillai, New Age International Private Limited, 8th Edition, 2018.
- 2. Engineering Physics by Gupta and Gour, Dhanpat Rai Publications, 2016 (Reprint).
- 3. Concepts of Modern Physics, ArthurBeiser, McGraw-Hill, 6th Edition, 2009.
- 4. Lasers and Non-Linear Optics, B B Loud, New age international, 2011 edition.
- 5. A textbook of Engineering Physics by M .N. Avadhanulu, P G. Kshirsagar and T V S Arun Murthy, Eleventh edition, S Chand and Company Ltd. New Delhi-110055.
- 6. Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang, Cambridge Universities Press, 2010 Edition.
- 7. Quantum Computing, Vishal Sahani, McGraw Hill Education, 2007 Edition.
- 8. Engineering Physics, S P Basavaraj, 2005 Edition,
- 9. Introduction to Superconductivity, Michael Tinkham, McGraww Hill, INC, II Edition
- 10. Quantum Computation and Logic: How Quantum Computers Have Inspired Logical Investigations, Maria Luisa Dalla Chiara, Roberto Giuntini, Roberto Leporini, Giuseppe Sergioli, TrendsinLogic, Volume 48, Springer.

Web links and Video Lectures (e-Resources):

LASER: <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>

Superconductivity: https://www.youtube.com/watch?v=MT5X15ppn48

Optical Fiber: <u>https://www.youtube.com/watch?v=N_kA8EpCUQo</u>

Quantum Mechanics: https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s

Quantum Computing: <u>https://www.youtube.com/watch?v=jHoEjvuPoB8</u>

NPTEL Supercoductivity: https://archive.nptel.ac.in/courses/115/103/115103108/

NPTEL Quantum Computing: https://archive.nptel.ac.in/courses/115/101/115101092

Virtual LAB: https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham

Virtual LAB: https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

http://nptel.ac.in

https://swayam.gov.in

https://virtuallabs.merlot.org/vl_physcs.

htmlhttps://phet.colorado.edu

https://www.myphysicslab.com

COs and POs Mapping (Individual teacher has to fill up)

COs						POs						
COS	1	2	3	4	5	6	7	8	9	10	11	12
CO1	0	0	0	0	0	0	0	0	0	0	0	2
CO2	3	1	0	0	0	0	0	0	0	0	0	2
CO3	3	3	0	0	0	0	0	0	0	0	0	2
CO4	1	0	0	0	2	0	0	1	3	0	0	2
CO5	1	0	0	2	2	0	0	1	0	0	0	2
Level 3-	Highly N	Iapped,	Level 2-N	Moderate	ly Mapp	ed, Leve	11-Low	Mapped,	Level 0-	Not Ma	pped	<u> </u>

Course Code	Principles of Programming using	C	
Course Code:	23POP13/23	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)	-	Total Marks	100
Teaching Hours/Week (L: T: P: S)	2:0:2:0	Exam Hours	3+2
Total Hours of Pedagogy	40 hours	Credits	03
 Course objectives CLO 1: Elucidate the basi CLO 2: Apply programmi CLO 3: Explore user-defito problems. CLO 4: Design and develoand procedures. Teaching-Learning Process These are sample Strategies, which Lecturer method (L) need n could be adopted to attain t Use of Video/Animation to Encourage collaborative (G Ask at least three HOT (Hig Adopt Problem Based Lear such as the ability to design Introduce Topics in manifo Show the different ways to creative ways to solve then 	c architecture and functionalities of a ng constructs of C language to solve a ned data structures such as arrays, str op solutions to problems using structu- teachers can use to accelerate the atta- to to be only traditional lecture metho- he outcomes. explain functioning of various conce- group Learning) Learning in the class. gher order Thinking) questions in the ning (PBL), which fosters students'' A a, evaluate, generalize, and analyze in ld representations. solve the same problem and encourage	computer. the real-world problems. uctures and pointers in imple ared programming constructs unment of the various course od, but alternative effective tea pts. class, which promotes critical analytical skills, develop desig formation rather than simply a ge the students to come up wit	ementing solutions such as functions outcomes. aching methods l thinking. gn thinking skills recall it.
students' understanding. 9 Use https://pythontutor.com	n∕visualize html#mode=edit in order t	o visualize the operations of (7 Programs
9. Use https://pythontutor.com	n/visualize.html#mode=edit in order t Module-1 (8 Hours)	-	
9. Use https://pythontutor.com Introduction to Computer Syste devices, designing efficient program Compiling and executing C prog Pre-requisite: Basic Mathematics Self-learning: Sample programs constants and Input / Output stat	Module-1 (8 Hours) ms and C Programming Languag ms. Introduction to C, Structure of C rams, variables, constants, Input/Ou s, Basics of Computer Organization to demonstrate the compilation an tements in C.	e: Introduction to computers program, Files used in a C pr atput statements in C.	s, input and output ogram, Compilers,
 Use https://pythontutor.com Introduction to Computer Syste devices, designing efficient program Compiling and executing C prog Pre-requisite: Basic Mathematics Self-learning: Sample programs 	Module-1 (8 Hours) ms and C Programming Languag ms. Introduction to C, Structure of C rams, variables, constants, Input/Ou s, Basics of Computer Organization to demonstrate the compilation an tements in C.	e: Introduction to computers program, Files used in a C pr atput statements in C.	s, input and output ogram, Compilers,
9. Use https://pythontutor.com Introduction to Computer Syste devices, designing efficient prograt Compiling and executing C prog Pre-requisite: Basic Mathematics Self-learning: Sample programs constants and Input / Output stat Textbook: Chapter 1.1-1.9, 2.1-2. Operators and Expressions, Deci Operators and Expressions: Oper Decision control and Looping sta iterative statements, nested Pre-requisite: Basic Mathematics	Module-1 (8 Hours) ms and C Programming Languag ms. Introduction to C, Structure of C rams, variables, constants, Input/Ou s, Basics of Computer Organization to demonstrate the compilation an tements in C. 2, 8.1 - 8.6 ,9.1-9.14 Module-2 (8 Hours) sion Control and Looping Statement rators in C, Type conversion and type attements: Introduction to decision co d loops, break and co s, Basics of Computer Organization ns to demonstrate the use of express	e: Introduction to computers program, Files used in a C pr atput statements in C. d execution of C programs, nts casting. ontrol, Conditional branching ontinue statements, g	s, input and output ogram, Compilers, , use of variables, statements, goto statement.

Arrays and Functions

Functions: Introduction using functions, Function definition, function declaration, function call, return statement, passing parameters to functions, scope of variables, storage classes, recursive functions.

Arrays: Declaration of arrays, accessing the elements of an array, storing values in arrays, Operations on arrays, Passing arrays to functions, two dimensional arrays, operations on two-dimensional arrays, two-dimensional arrays to functions, multidimensional arrays, applications of arrays.

Pre-requisite: Basic Mathematics, Basics of Computer Organization Self-learning: Sample C programs to demonstrate the use of arrays and program modularization.

Textbook: Chapter 11.1-11.10, 12.1-12.10, 12.12

Module-4 (8 Hours)

Strings and Pointers

Strings: Introduction, string taxonomy, operations on strings, Miscellaneous string and character functions, arrays of strings.

Pointers: Introduction to pointers, declaring pointer variables, Types of pointers, Passing arguments to functions using pointers.

Pre-requisite: Basic Mathematics, Basics of Computer Organization Self-learning: Sample programs to demonstrate the use of strings and pointers.

Textbook: Chapter 13.1-13.6, 14-14.7

Module-5 (8 hours)

Structure, Union, and Enumerated Data Type: Introduction, structures and functions, Unions, unions inside structures, Enumerated data type.

Files: Introduction to files, using files in C, reading and writing data files, Detecting end of file.

Pre-requisite: Basic Mathematics, Basics of Computer Organization Self-learning: Sample programs to demonstrate the use of structures, unions and file access.

Textbook: Chapter 15.1 - 15.10, 16.1-16.5

List of Experiments:

1 Simulation of a Simple Calculator.

2 Compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.

3 An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs.

100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amountis charged. Write a program to read the name of the user, number of units consumed and print out the charges.

4. Write a C Program to display the following by reading the number of rows as input,

	1	
1	2	1
12	3	21
123	4	321

- 5 Implement Binary Search on Integers.
- 6 Implement Matrix multiplication and validate the rules of multiplication.
- 7 Compute sin(x)/cos(x) using Taylor series approximation. Compare your result with the built-in library function. Print both the results with appropriate inferences.
- 8 Sort the given set of N numbers using Bubble sort.
- 9 Write functions to implement string operations such as compare, concatenate, and find string length. Use theparameter passing techniques.
- 10 Implement structures to read, write and compute average- marks of the students, list the students scoring above and below the average marks for a class of N students.
- 11 Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.

12. Write a C program to copy a text file to another, read both the input file name and target

Suggested Learning Resources: Textbooks 1. Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second edition, 2017. **Reference Books:** 1. E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill. Brian W. Kernighan and Dennis M. Ritchie, The "C" Programming Language, Prentice Hall of India. 2. Web links and Video Lectures (e-Resources): elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html 1. https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more clarity in 2. understanding the topics and verities of problem solving methods. https://tinyurl.com/4xmrexre 3. Activity Based Learning (Suggested Activities in Class)/ Practical Based learning **Ouizzes** •

- Assignments
- Seminars

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Elucidate the basic architecture and functionalities of a computer.
CO2	Apply programming constructs in C to solve the real-world problem.
CO3	Explore user-defined data structures like arrays in implementing solutions to problems like searching and sorting.
	Explore user-defined data structures like structures, unions and pointers in implementing solutions.
CO5	Design and develop solutions to problems using modular programming constructs.

I/II Semester

Course Code	L:T:P: S	CIE Marks	SEE Marks	Total Marks	Exam Hours
23ESC144/244	3:0:0:0	50	50	100	03
Total Hours	of Pedagogy	40	Cre	dits	03

INTRODUCTION TO MECHANICAL ENGINEERING

Course Learning Objectives:

The course will enable the students to

- **1.** To develop basic Knowledge on Mechanical Engineering, Fundamentals and EnergySources.
- **2.** Understand the concept of different types of Machine tool operations and ModernManufacturing Processes like CNC, 3Dprinting.
- **3.** To know the concept of IC engines and Future Mobility vehicles.
- **4.** To give exposure in the field of Engineering Materials and ManufacturingProcess Technology and its applications.
- **5.** To acquire a basic understanding of the role of Mechanical Engineering in theRobotics and Automation industry.

Module-1(8 hours)

Introduction: Role of Mechanical Engineering in Industries and Society- Emerging Trends and Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors.

Energy: Introduction and applications of Energy sources like Fossil fuels, Nuclear fuels, Hydel, Solar- Solar flat plate collector and solar pond, wind, bio-fuels, Environmental issues like Global warming and Ozone depletion.

Module-2 (8 hours)

Machine Tool Operations:

Working Principle of lathe, Lathe operations: Turning, facing, knurling, and Taper turning. Working principles of Drilling Machine, drilling operations: drilling, boring, reaming. Working of Milling Machine, Milling operations: plane milling and slot milling.

(No sketches of machine tools, sketches to be used only for explaining the operations).

Introduction to Advanced Manufacturing Systems: Introduction, components of CNC,

advantages and applications of CNC, Differences between Conventional and CNC machines, , 3Dprinting and its applications

Module-3

Introduction to IC Engines: Components and Working Principles, 4-Strokes Petrol and Diesel Engines, Application of IC Engines, Performance parameters of IC engines, Simple numericals.

Insight into Future Mobility; Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles. Advantages and disadvantages of EVs and Hybrid vehicles.

Module-4 (8 hours)

Engineering Materials: Types and applications of Ferrous & Nonferrous Metals, silica, ceramics, glass, graphite, diamond and polymer. Shape Memory Alloys.

Composite materials - Introduction, Classification, Properties and application of compositematerials. Different Matrix and reinforcements for the composite materials.

Joining Processes: Soldering, Brazing and Welding, Definitions, classification of weldingprocess, Arc welding, Gas welding and types of flames.

Module-5 (8 hours)

Introduction to Mechatronics and Robotics: open-loop and closed-loop mechatronic systems. Sensors - Displacement, Position and Proximity sensors, Actuators - Hydraulic and Pneumatic, Classification based on robotics configuration: polar cylindrical, Cartesian coordinate and spherical. Application, Advantages and disadvantages.

Automation in industry: Definition, types – Fixed, programmable and flexible automation, basic elements with block diagrams, advantages.

Introduction to IOT: Definition and Characteristics, Physical design, protocols, Logical design of IOT, Functional blocks, and communication models.

Course Outcomes:

At the end of the course, the student will be able to:

- **1.** Recognize the of role of Mechanical Engineering in various sectors and applications of Energy sources in power generation.
- **2.** Apply the knowledge of Machine Tools and advanced Manufacturing processes used for shaping the materials for real-life applications.
- **3.** Comprehend the working principles of I C Engines and Future mobilitytechnologies.
- 4. Identify the various applications of engineering materials and different metal joiningprocesses.
- **5.** Apply the fundamental knowledge of Robotics and Automation in IoT for solving real life problems in a multidisciplinary approach.

Assessment Details both(CIE and SEE):

Scheme of Evaluation

Continuous Internal Evaluation (CIE) :

IAT-1 at the end of 8 th Week	-	25 marks
IAT-2 at the end of 13 th Week	-	25 Marks
CCE-1 at the end of 4 th Week	-	25 Marks
CCE-2 at the end of 9 th Week	-	25 Marks
Total	-	100 Marks

The average of two IAT1 scaled down to 25 marks and average of two CCE's scaled down to 25 marks shall be considered as CIE marks of the course.

Semester End Examination(SEE):

- The question paper shall be set for 100 marks.. The duration of SEE is 03hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics underthat module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) TextBooks:

- 1. Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2008
- 2. An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper Lewis,
- 3. Third Edition, 2012

Reference Books:

- 1. Elements of Workshop Technology (Vol. 1 and 2), Hazra Choudhry and Nirzar Roy, Media Promoters and Publishers Pvt. Ltd., 2010.
- 2. Manufacturing Technology-Foundry, Forming and Welding, P.N.Rao Tata McGraw Hill 3rd Ed., 2003.
- 3. Internal Combustion Engines, V.Ganesan, Tata McGraw Hill Education;4th edition,2017
- 4. Robotics, Appu Kuttan K K K. International Pvt Ltd, volume1
- **5.** Dr SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A Practical Approach", ETILabs Raj kamal, "Internet of Things: Architecture and Design", McGraw hill.

Web links and Video Lectures (e-Resources):

- https://rakhoh.com/en/applications-and-advantages-of-steam-in-manufacturing- and- processindustry/)
- o Videos | Makino (For Machine Tool Operation)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Demonstration of lathe/milling/drilling operations
- Demonstration of working of IC Engine.
- Study arc welding
- Video demonstration of latest trends in mobility robotics and Automation
- Demonstration of developing models on machine tools

COs and POs Mapping (CO-PO mappings are only Indicative)

COs]	POs					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3					1	2			1		1
CO2	3					1	1			1		1
CO3	3					1	2			1		1
CO4	3					1	1			1		1
CO5	3					1	1			1		1
Level 3	-Highly	Mapped	, Level	2-Moder	atelyMa	pped,	Level 1	l-Low M	apped, I	Level 0-	Not Map	ped

Intro	oduction to Civil Engineering & Engineering Mechanics		
Course Code:	23ESC141/241	CIE Marks	50
Teaching Hours/Week (L: T: P: S) (3:0:0:0)	Credits (3:0:0:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03
Course objectives:			
This course will enable students to:			
	lizations of civil engineering.		
÷ *	roblems solving skill involving force	s moments with their	
applications.	solving skin involving lolee	s, moments with then	
**	enter of the plane lamina and the iner	rtial countar force with	
-	enter of the plane familia and the men	that counter force with	
their applications.	1.1.1.1		
4. The behavior of the moving			
Teaching-Learning Process (General Ins		6.4	
These are sample Strategies, which teacher			
• Lecture method (L) does not mean of	-	t different type of tea	ching
methods may be adopted to develop the	e outcomes.		
• Arrange visits to nearby sites to give be	rief information about the civil engin	eering structures.	
• Show video/ animation films to explain	n the infrastructure and the mechanism	m involved in the princ	ciple.
• Ask at least three HOTS (Higher order	Thinking) questions in the class, whi	ch promotes critical th	inking.
• Adopt Problem Based Learning (PBL)). which fosters students' Analytical	skills, develop thinkin	ng skills su
as the ability to evaluate, generalize, an		-	0
 Show the different ways to solve the s 			theirown
creative ways to solve them.	same problem and encourage the star	dents to come up with	ulcii o wii
-	lied to the real world and when the	t'a nassihla it halna imi	provo tho
• Discuss how every concept can be app	ned to the real world - and when that	t s possible it neips imj	prove the
students understanding.			
	Module-1		
Civil Engineering Disciplines and Bu Structural Engineering, Geotechnical Engineering, Environmental Engineering,	Engineering, Hydraulics & Wat Construction planning & Project man	er Resources, Trans agement.	sportation
Basic Materials of Construction: Brick Structural steel, Construction Chemicals. (1)	Properties and uses of different mater	rial to be discussed)	
Structural Elements of a building: foun and staircase (Activity for students: expose			eam, slab
			08 Hours
	Module-2		
Statics: Fundamentals of Mechanics, conc of superposition and transmissibility, Conc Parallelogram of forces, Law of triangle of resultant of concurrent. Equilibrium and eq of Law of parallelogram of forces)	Forces: Resolution and compo forces, Lami's theorem and Law of	osition of forces, Law of polygon of forces to de	of etermine the

Module-3

Non concurrent Forces: Moment of forces, couple, Varignon's theorem, free body diagram, equations of equilibrium, equilibrium of concurrent and non-concurrent coplanar force systems (Applied Problems such as forces acting on a wrench, Aero-plane, Different varieties of Beams, Booms, etc.,. 08 Hours

Module-4

Centroid: Importance of centroid and center of gravity, methods of determining the centroid, locating the centroid of plane lamina from first principles, centroid of built-up sections. Numerical examples

Moment of Inertia: Importance of Moment of Inertia, method of determining the second moment of area (moment of inertia) of plane sections from first principles, parallel axis theorem and perpendicular axis theorem, section modulus, radius of gyration, moment of inertia of built-up sections, Numerical Examples.(Application of problems in Microsoft excel)

08 Hours

Module-5

Kinematics : Displacement, average velocity, instantaneous velocity, speed, acceleration, average acceleration, variable acceleration, acceleration due to gravity, Newton's law of motion, rectilinear motion and numerical problems, curvilinear motion, super elevation, projectile motion, relative motion, numerical problems, motion under gravity, numerical problems

Kinetics: D 'Alemberts Principle and its application in plane motion and connected bodies

08 Hours

Teaching-Learning Process for	Chalk and Talk, PowerPoint presentation, flip teaching, YouTube
all modules	videos

Course Outcomes

At the end of the course the student will be able to :

- **1.** Understand the objectives of various disciplines of civil engineering and the importance of building material
- **2.** To learn the effect of force, moment and coupling on rigid body.
- 3. Visualize the concept of Centroid and moment of inertia for different shapes
- 4. Understand basic concepts dynamics force, momentum, work, energy.and its application

Assessment Details (both CIE and SEE)

Component	Type of Assessment	Max. Marks	Total	Reduced Marks	Total
	CIE-1	25			
CIE- Theory	CIE-2	25	100	50	50
	AAT-1	25	- 100		50
	AAT-2	25			
SEE	End Exam		50	50	
	Grand Tot	1	00		

Suggested Learning Resources:

Text Books:

1. I B Prasad, Engineering Mechanics Statics and Dynamics, Khanna Publishers

2. Nelson , Engineering Mechanics Statics and Dynamics, Tata Mc-Graw Hill

Education Private Limited

3. J. L. Meriam, L. G. Kraige, et al. Engineering Mechanics –Statics and Dynamics, Wiley

Reference Books:

- 1. R. C. Hibbbler, Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
- 2. Bansal R. K., A Text Book of Engineering Mechanics, Laxmi Publications.
- 3. Andy Ruina and Rudra Pratap, Introducing to Statics and Dynamics, Oxford University Press.
- 4. Reddy Vijay Kumar K and K Suresh Kumar, Engineering Mechanics.
- 5. F.P. Beer and E. R. Johnston, Mechanics for Engineers, Statics and Dynamics, McGraw Hill.
- 6. Irving H. Shames, Engineering Mechanics, Prentice Hall.

E-Resources:

- https://edurev.in/courses/24561_Engineering-Mechanics
- <u>https://www.real-world-physics-problems.com/engineering-mechanics</u> problems.html#kinematics_curvilinear_normal_tangential
- https://www.iitg.ac.in/rkbc/me101/Presentation/L01-03.pdf
- https://archive.nptel.ac.in/courses/112/106/112106286/

CO- PO Mapping :

POS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
COs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2											1	1	2	
CO2	2	3	1									1	1	2	
CO3	2	3	1									1	1	2	
CO4	1	3	1									1	1	2	
СО	1.7 5	3	1									1	1	2	
				•											

SEMESTER - 1st / 2nd

Course	e Name – Waste Management		
Course Code	23ETC 15F/25F	CIE Marks	50
Teaching Hours/Week : 3: 0: 0: 0	Credits: 3	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory	Total Marks	100
Credits	03	Exam Hours	03
Course objectives:		· · · · · · · · · · · · · · · · · · ·	
This course will enable students to: Understand the different types of waste. Analyze different collection, storage, hand Study the scenario of waste management ir	• • •	ilities to different types	of waste.
state, the sector of waste management in			
Teaching-Learning Process These are sample Strategies, which teacher andmake Teaching-Learning more effective		nt of the various course	outcomes
1. Flipped Class			
2. Chalk and Talk			
3. Blended Mode of Learning			
4. Simulations, Interactive Simulation	ons and Animations		
5. NPTEL and Other Videos for the	ory topics		
6. Smart Class Room			
	Module-1		
Interaduation to the Wester Monogenerat			08 Hours
Introduction to the Wastes Management Definition of waste, classification of waste health, different sources of waste, need of Municipal Solid Waste Management	e based on their physical, bio – degr	adability, effect of was	te on huma
Composition, quantity of municipal solid w waste, separation for recycling, reuse of municipal solid waste. Solid waste manage	f plastics, paper and glass from n		
	Module-2		
Industrial Solid Waste Management			08 Hours
Classification of industrial solid waste, and and disposal of industrial solid waste. Exi Impacts of improper disposal of solid waste	sting laws to regulate and control th	he disposal of solid wa	
	Module-3		

Biomedical Waste Management

Colour coding of biomedical waste and their collection in different coloured bins or bags, collection of sharp waste, labeling and identification of biomedical waste, storage, transportation, treatment and disposal of biomedical waste. Impacts of improper disposal of biomedical on human health and environment. Biomedical waste management rules 2016. Legislative laws on management of biomedical waste in India.

08 Hours

Module-4

08 Hours

Radioactive Wastes Management

Sources of radio activity from the environment. Classification of radioactive wastes, packaging, labelling, transportation and storage of radioactive materials. Disposal of nuclear waste in India. Impact of radioactivity on biological environment. Case study on nuclear and radiation accidents. Atomic energy (Safe disposal of radioactive wastes) rules, GSR – 125.

Module-5

E Wastes and Hazardous Management

Definition of E waste, sources of generation of E waste, storage, transportation, and disposal of E waste. Adverse Health and environmental impacts of E waste.

Definition of hazardous waste, sources of generation, storage, transportation and disposal of hazardous waste, Impacts of improper disposal of hazardous waste on human health and environment. E – Waste management rules 2022. Legislative laws on management of hazardous and E - waste in India.

Teaching-Learning Process for all	Chalk and Talk, PowerPoint presentation, flip teaching, YouTube
modules	videos

Course Outcomes

At the end of the course the student will be able to :

- 1. Categorize the different types of waste and identify their impact on human health and environment.
- 2. Suggest suitable collection, storage, handling, transport and disposal facilities to different categories of waste.
- 3. Recognize the need of waste management towards sustainable development.
- 4. Recommend suitable control measures to the improper waste management in concern to public health and safety.
- 5. Comprehend different rules, laws and legislation on management of different types of waste.

Assessment Details (both CIE and SEE)

	Grand Tot	50	50 00		
SEE	End Exam	nd Exam 100			
	AAT-2	25			
CIE- Theory	AAT-1	25	100	50	50
	CIE-2	25	100		50
	CIE-1	25			
Component	Type of Assessment	Max. Marks	Total	Reduced Marks	Total

Suggested Learning Resources:

Text Books:

- 1. B Tabassum, Priya Bajaj, Pawan Kumar, Bharathi, "Waste Management and Environmental health", Discovery publishing house pvt Ltd, ISBN: 9350567776.
- 2. Syed E Hasan, "Introduction to Waste Management", Willey Pubishers, ISBN: 978-1-119 43393-4.
- 3. S. K Garg, "Sewage Waste Disposal and Air Pollution Engineering", Khanna Publishers, 9788174092304.
- 4. Tchobaanoglous, G., Theisen, H., and Samuel A Vigil, Integrated Solid Waste Management, McGraw-Hill Publishers, 1993.

5.Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H., Waste Management, Springer, 1994. **Reference Books:**

1. White, F. R., Franke P. R., & Hindle M., Integrated solid waste management: a life cycle inventory. McDougall, P. John Wiley & Sons. 2001

08 Hours

2. Nicholas, P., & Cheremisinoff, P. D., Handbook of solid waste management and waste minimization technologies, Imprint of Elsevier Science. 2005

E-Resources:

https://www.youtube.com/watcE https://archive.nptel.ac.in/cours/

CO- PO Mapping :

POS	РО	РО	РО	PO	РО	PS	PS]							
COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	•
CO1						3	2	1				3		2	
CO2						3		2				3		3	
CO3						2	3					3		3	
CO4						3		3				3		3	
CO5						2	2	3				3			

SEMESTER – 1 & 2

Course Name	Communicative English		
Course Code:	23ENG16/26	CIE Marks	50
Teaching Hours/Week (L: T: P: S) (1:0:0:0)	Credits (1:0:0:0)	SEE Marks	50
Total Hours of Pedagogy	24 hours Theory	Total Marks	100
Credits	01	Exam Hours	01

Course objectives:

This course will enable students to:

- 1. To know about Fundamentals of Communicative English and Communication Skills in general.
- 2. Understanding how to connect and communicate when meeting for the first time. & English grammar and essentials of important language skills.
- 3. How to describe self & how to case interests & hobbies. Learning the Usage of Adjectives, Adverbs, Articles Tense: Continuous Tenses
- 4. Understanding/ learning to describe things & others. incorporating Grammar in communication
- 5. Improving Communication & Presentation skills & eliminating MTI.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes and make

Teaching –Learning more effectively: Teachers shall adopt suitable pedagogy for an effective teaching-learning process. The pedagogy shall involve the combination of different methodologies that suit modern technological tools and software to meet the present requirements of the Global employment market.

- (i) Direct instructional method (Low/Old Technology),
- (ii) Flipped classrooms (High/advanced Technological tools),
- (iii) Blended learning (Combination of both),
- (iv) Enquiry and evaluation-based learning,
- (v) Personalized learning,
- (vi) Problems-based learning through discussion, (vii) Following the method of expeditionary learning Tools and techniques, (viii) Use of audio-visual methods through language Labs in teaching LSRW skills.

Apart from conventional lecture methods, various types of innovative teaching techniques through videos, and animation films may be adapted so that the delivered lesson can progress the students In theoretical applied and practical skills in teaching of communicative skills in general.

	Module-1	5 hours
Introduction to Communicative English	1:	
Introduction, Language as a Tool, Fundam	nentals of Communicative E	nglish, Process of Communication,
Barriers to Effective Communicative Engl	lish, Different styles and leve	els in Communicative English
(Communication Channels). Interpersonal	and Intrapersonal Commun	ication Skills, How to Improve and
Develop Interpersonal and Intrapersonal C	Communication Skills.	
	Module-2	05 hours
Speaking activity:		
Social graces, Greeting, Self-introduction,	introducing others Asking f	for and Giving Information.
Grammar and Vocabulary in Use: Parts of	Speech, Nouns, Pronouns A	Articles, Asking questions.
(WH, Aux Verbs)		
	Module-3	04 Hours
Speaking activity		
Speaking about Routine, Hobbies, Likes a	nd Dislikes	
Grammar and Vocabulary in Use: Verb= 1	Main / Assistant, Forms of V	Verbs. Tense: Simple present tense.

Writing exercises: Subject Verb Agreement, Positive and Negative sentences, Question tags

		Module-4	05 Hours
Word f	formation - Prefixes and Su	ammar and Vocabulary PART - II: offixes, Contractions and Abbreviations. V nses, The Sequence of Tenses (Rules in u	
		Module-5	05 Hours
Comm	unication Skills for Empl	oyment:	
betwee	en Extempore / Public Sp	entation - Examples and Practice. Exten eaking, Communication Guidelines for Neutralization of Mother Tongue Influence	Practice. Mother Tongue Influence
Feachin module	ng-learning process for a s	ll Chalk and Talk, PowerPoint pr videos	esentation, flip teaching, YouTub
At the er 5. Unc 6. Ider 7. To i 8. Unc 9. Adc	ntify the nuances of phonet impart basic English gram derstand and use all types of	damentals of Communication Skills in the cics, and intonation and enhance pronunci mar and essentials of language skills as poor of English vocabulary and language profit rmation Transfer through the presentation	ation skills. er present requirement. ciency.
ľ		Component	Weightage (%)

IAT 1	25		60%	
IAT 2	25	Scaled to 15	0070	
CCE 1	25		400/	
CCE 2	25	Scaled to 10	40%	

Suggested Learning Resources:

Text Books:

- **1.** Communication Skills by Sanjay Kumar & Pushp Lata, Oxford University Press India Pvt Ltd 2019.
- 2. A Textbook of English Language Communication Skills, (ISBN-978-81-955465-2-7), Published by Infinite
- **3.** Learning Solutions, Bengaluru 2022.

Reference Books:

- 1. Technical Communication by Gajendra Singh Chauhan and Et al, (ISBN-978-93-5350-050-4), Cengage learning India Pvt Limited [Latest Revised Edition] 2019.
- 2. English for Engineers by N.P.Sudharshana and C.Savitha, Cambridge University Press 2018.
- English Language Communication Skills Lab Manual cum Workbook, Cengage learning India Pvt Limited. [Latest Revised Edition] – (ISBN-978-93-86668-45-5), 2019.
- 4. A Course in Technical English D Praveen Sam, KN Shoba, Cambridge University Press 2020.
- 5. Practical English Usage by Michael Swan, Oxford University Press 2016

CO- PO Mapping:

POS COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
1	-	-	-	-	-	-	-	2	2	2	-	3	-	-	-
2	-	-	-	-	-	-	-	2	2	2	-	2	-	-	-
3	-	-	-	-	-	-	-	2	2	3	-	2	-	-	-
4	-	-	-	-	-	-	-	2	3	2	-	2	-	-	-
5	-	-	-	-	-	-	-	3	2	2	-	3	-	-	-

Course Title:		ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	
Course Code:	23KSK17 /27	CIE Marks	50
Course Type	Theory	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L:T:P: S)	1:0:0:0	Exam Hours	01
Total Hours of Pedagogy	25	Credits	01

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು:

1. ವೃತ್ತಿಪರ ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಕನ್ನಡ ಭಾಷೆ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು

2. ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕ ಮತ್ತು ಆಧುನಿಕ ಪೂರ್ವ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು

3. ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಹಾಗೂ ಸಾಹಿತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರು ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು

4. ಕನ್ನಡ ಶಬ್ದ ಸಂಪತ್ತಿನ ಪರಿಚಯ ಮತ್ತು ಕನ್ನಡ ಭಾಷೆಯ ಬಳಕೆ ಹಾಗೂ ಕನ್ನಡದಲ್ಲಿ ಪತ್ರ ವ್ಯವಹಾರವನ್ನು ತಿಳಿಸಿಕೊಡುವುದು

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching-Learning Process - General Instructions) :

These are sample Strategies, which teacher can use to accelerate the attainment of the course outcomes.

- ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನು ಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಪುಸ್ತಕ ಅಧಾರಿಸಿ ಬ್ಲಾಕ್ ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಚ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 2. ಇತ್ತೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು ಅಂದರೆ ಕವಿ-ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಬ್ರ ಧ್ವನಿ ಚಿತ್ರಗಳು, ಸಂಭಾಷಣೆಗಳು, ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಬೆಪಿಟಿ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ಲೇಷಿಸುವುದು.
- ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಬ್ಪ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಘಟಕ-1: ಲೇಖನಗಳು

ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ: ಹಂ. ಪ. ನಾಗರಾಜಯ್ಯ

ಕರ್ನಾಟಕದ ಏಕೀಕರಣ: ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ- ಜಿ. ವೆಂಕಟ ಸುಬ್ಬಯ್ಯ

ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ: ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೊ ವಿ. ಕೇಶವಮೂರ್ತಿ

ಘಟಕ-2: ಆಧುನಿಕ ಪೂರ್ವ ಕಾವ್ಯ ಭಾಗ

ವಚನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೇಡರ ದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ

ಕೀರ್ತನೆಗಳು: ಅದರಿಂದೇನು ಫಲ- ಪುರಂದರದಾಸರು

ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ- ಕನಕದಾಸರು

ತತ್ವಪದಗಳು: ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ರು -ಶಿಶುನಾಳ ಶರೀಫ

ಘಟಕ-3: ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ

ಡಿವಿಜಿ ಅವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗ ಆಯುಧ ಕೆಲವು ಭಾಗಗಳು

ಕುರುಡು ಕಾಂಚಾಣ-ದ. ರಾ. ಬೇಂದ್ರೆ

ಹೊಸಬಾಳಿನ ಗೀತೆ- ಕುವೆಂಪು

ಘಟಕ-4 ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ

ಡಾ. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ ವ್ಯಕ್ತಿ ಮತ್ತು ಐಪಿಸಿಯ ಐತಿಹ್ಯ- ಎ.ಎನ್. ಮೂರ್ತಿರಾವ್

ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ- ಕರಿಗೌಡ ಬೀಚಿನಹಳ್ಳಿ

ಘಟಕ-5 ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ

ಯುಗಾದಿ- ವಸುಧೇಂದ್ರ

ಪರ್ವತ ಮೇಘಾನೆ ಎಂಬ ಗಿರಿಜನ ಪರ್ವತ- ಹಿ. ಚಿ. ಬೋರಲಿಂಗಯ್ಯ

ಪಠ್ಯಪುಸ್ತಕ :

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ

ಡಾ. ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ,

ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.

COURSE EVALUATION SCHEME:

Co	mponent			Weightage (%)
IAT-1	Internal Tests	25	25	
IAT-2	Internal Tests	25	- 25	50
CCE-1	Internal	25	25	50
CCE-2	Assignments	25		
				SEE- 100 : Reduced to 50
				Total : CIE+ SEE= 100

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು

CO1	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ, ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ
CO2	ಕನ್ನಡದ ಆಧುನಿಕ ಸಾಹಿತ್ಯ ಹಾಗು ಆಧುನಿಕ ಪೂರ್ವ ಸಾಹಿತ್ಯ ಪರಿಚಯ
CO3	ಸಾಹಿತಿಗಳ, ಕವಿಗಳ ಹಾಗು ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ
CO4	ಆಡಳಿತ ಭಾಷೆಯ ಪದಗಳ ಪರಿಚಯ ಹಾಗು ಕಥೆಗಳ ಬಗ್ಗೆ ಆಸಕ್ತಿ

COs and POs Mapping

POS COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
C107.1									3	2		
C107.2									3	2		
C107.3								2	3	2		
C107.4									3	2		1

ಬಳಕೆ ಕನ್ನಡ BaLake Kannada (Kannada for Usage)

ಕನ್ನಡ ಕಲಿಕೆಗಾಗಿ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಪುಸ್ತಕ - (Prescribed Textbook to Learn Kannada)

ವಿಷಯ ಸಂಕೇತ (Course Code)	23KBK17/27	ನಿರಂತರ ಅಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ ಅಂಕಗಳು (Continous Internal Evalution Marks)	50
ಒಂದು ವಾರಕ್ಕೆ ಬೋಧನಾ ಅವಧಿ (Teaching Hours/Week (L:T:P:S)	1:0:0:0	ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯ ಅಂಕಗಳು (Semester End Examination Marks)	50
ಒಟ್ಟು ಬೋಧನಾ ಅವಧಿ Total Hours of Pedagogy	16 ಗಂಟೆಗಳ	ಒಬ್ಬ ಅಂಕಗಳು (Total Marks)	100
Credits	01	ಪರೀಕ್ಷೆಯ ಅವಧಿ (Exam Hours)	2 ಗಂಟೆ

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯದ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು (Course Learning Objectives)

- To create awareness regarding the necessity of learning the local language for a comfortable and healthy life.
- To enable learners to Listen and understand the Kannada language properly.
- To speak, read and write the Kannada language as per requirement.
- To train the learners for correct and polite conservation

ಬೋಧನೆ ಮತ್ತು ಕಲಿಕಾ ವ್ಯವಸ್ಥೆ (Teaching – Learning Process – General Instructions):

These are sample strategies which teachers can use to accelerate the attainment of the course outcomes.

- 1. ಬಳಕೆ ಕನ್ನಡವನ್ನು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಬೋಧಿಸಲು ಸೂಚಿಸಿದ ಪಠ್ಯಪುಸ್ತಕವನ್ನು ಉಪಯೋಗಿಸಬೇಕು.
- 2. ಪ್ರಮುಖ ಅಂಶಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಉತ್ತೇಜಿಸುವುದು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- ಪ್ರತಿ ವಿದ್ಯಾರ್ಥಿ ಪುಸ್ತಕವನ್ನು ತರಗತಿಯಲ್ಲಿ ಬಳಸುವಂತೆ ನೋಡಿಕೊಳ್ಳುವುದು ಮತ್ತು ಪ್ರತಿ ಪಾಠ ಮತ್ತು ಪ್ರವಚನಗಳ ಮೂಲಕ ವಿಷಯಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಪೂರಕ ಚಟುವಟಿಕೆಗಳಿಗೆ ತೊಡಗಿಸು ತಕ್ಕದ್ದು.
- 4. ಡಿಜಿಟಲ್ ತಂತ್ರಜ್ಞಾನ ಮುಖಾಂತರ ಇತ್ತೀಚಿಗೆ ಡಿಜಿಟಲೀಕರಣ ಭಾಷೆ ಕಲಿಕೆಯ ವಿಧಾನಗಳನ್ನು ಮತ್ತು ದೃಶ್ಯ ಮಾಧ್ಯಮದ ಮುಖಾಂತರ ಚರ್ಚಿಸಲು ಕ್ರಮಕೈಗೊಳ್ಳುವುದು ಇದರಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ತರಗತಿಯಲ್ಲಿ ಏಕಾಗ್ರತೆಯಿಂದ ಪಾಠ ಕೇಳಲು ಮತ್ತು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಲು ಅನುಕೂಲವಾಗುತ್ತದೆ.
- ಭಾಷಾ ಕಲಿಕೆಯ ಪ್ರಯೋಗಾಲಯದ ಮುಖಾಂತರ ಬಹುಬೇಗ ಕನ್ನಡ ಭಾಷೆಯನ್ನು ಕಲಿಯಲು ಅನುಕೂಲವಾಗುವಂತೆ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳನ್ನು ಮತ್ತು ಕ್ರಿಯಾ ಯೋಜನೆಗಳನ್ನು ರೂಪಿಸುವುದು.

Module – 1

03 hours

- 1. Introduction, Necessity of Learning a local language, Methods to learn the Kannada language.
- 2. Easy learning of a Kannada Language: A few tips. Hints for correct and polite and polite conservation Listening and Speaking Activities.
- 3. Key to Transcription
- 4. ವೈಯಕ್ತಿಕ ಸ್ವಾಮ್ಯಸೂಚಕ ಸಂಬಂಧಿತ ಸರ್ವನಾಮಗಳು ಮತ್ತು ಪ್ರಶ್ನಾರ್ಥಕ ಪದಗಳು- Personal Pronouns, Possessive Forms, Interrogative words.

ಬೋಧನೆ ಮತ್ತು	ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ಬೋರ್ಡ್ ವಿಧಾನ ಪ್ರಮುಖ ಅಂಶಗಳು ಚಾರ್ಚ್ ಗಳನ್ನು ಬೆಳೆಸುವುದು	ಪಿಪಿಟಿ ಮತ್ತು
ಕಲಿಕಾ ವಿಧಾನ	ದೃಶ್ಯಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಚರ್ಚಿಸುವುದು	ಮುಖಾಂತರ
	Module – 2	03 hours
1. ನಾಮಪದಗ	ಗಳ ಸಂಬಂಧಾರ್ಥಕ ರೂಪಗಳು ಸಂದೇಹಾಸ್ಪದ ಪ್ರಶ್ನೆಗಳು ಮತ್ತು ಸಂಬಂಧವಾಚಕ ನಾಮಪದಗಳು ·	_
	e forms of nouns, dubitive question and Relative nouns.	
	ರಾಣ ವಿಶೇಷಣಗಳ ಸಂಖ್ಯಾವಾಚಕಗಳು Qualitative, Quantitative and colour Adjectives N	
	ಪಗಳು ಮತ್ತು ವಿಭಕ್ತಿಪ್ರತ್ಯಯಗಳು - ಸಪ್ತಮಿ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯ - (ಆ, ಅದು, ಅವು, ಅಲ್ಲಿ) Predictive 1 ~	Forms,
Locative (ಬೋಧನೆ ಮತ್ತು	Case. ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ಬೋರ್ಡ್ ವಿಧಾನ ಪ್ರಮುಖ ಅಂಶಗಳು ಚಾರ್ಚ್ ಗಳನ್ನು ಬೆಳೆಸುವುದು	ಸಿಸಿಣಿ ಮಹು
_		_
ಕಲಿಕಾ ವಿಧಾನ	ದೃಶ್ಯಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ ಚರ್ಚಿಸುವುದು	ຒຠຠຎ຺຺ຒ
	Module – 3	03 hours
1. ಚತುರ್ಥಿ ವಿ	ಭಕ್ತಿ ಪ್ರತ್ಯಯದ ಬಳಕೆ ಮತ್ತು ಸಂಖ್ಯಾವಾಚಕಗಳು – Dative Cases and Numerals	
	ವಾಚಕಗಳು ಮತ್ತು ಬಹುವಚನ ನಾಮರೂಪಗಳು – Ordinal numerals and Plural markers.	
e e		olour
Adjective		
ಬೋಧನೆ ಮತ್ತು	ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ಬೋರ್ಡ್ ವಿಧಾನ ಪ್ರಮುಖ ಅಂಶಗಳು ಚಾರ್ಚ್ ಗಳನ್ನು ಬೆಳೆಸುವುದು	ಪಿಪಿಟಿ ಮತ್ತು
ಕಲಿಕಾ ವಿಧಾನ	ದೃಶ್ಯಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ	ಮುಖಾಂತರ
	ಚರ್ಚಿಸುವುದು	
	Module – 4	03 hours
1. ಅಪ್ಪಣೆ /ಒಜಿ	್ಬಗೆ, ನಿರ್ದೇಶನ,ಪ್ರೋತ್ಸಾಹ ಮತ್ತು ಒತ್ತಾಯ ಅರ್ಥರೂಪ ಪದಗಳು ಮತ್ತು ವಾಕ್ಯಗಳು	
	ommands, encouraging and Urging words (Imperative words and sentences) ಸಂಭಾಷಣೆಗಳಲ್ಲಿ ದ್ವಿತೀಯ ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ಸಂಭವನೀಯ ಪ್ರಕಾರಗಳು	
-	ses and Potential Forms used in General Communication	
3. ''ಇರು ಮತ	ು ಇರಲ್ಲ'' ಸಹಾಯಕ ಕ್ರಿಯಾಪದಗಳು, ಸಂಭಾವ್ಯ ಸೂಚಕ ಮತ್ತು ನಿಷೇದಾರ್ಥಕ ಕ್ರಿಯಾಪದಗಳು	
· ·	s "iru and iralla", Corresponding Future and Negation Verbs	ود
	ತರತಮ), ಸಂಬಂಧಸೂಚಕ, ಮತ್ತು ವಸ್ತು ಸೂಚಕ ಪ್ರತ್ಯಯಗಳು ಮತ್ತು ನಿಷೇದಾರ್ಥಕ ಪದಗಳ ಬ೪ Relationship, Identification and Negation words.	30
	ಪುಸ್ತಕ ಆಧಾರಿತ ಬ್ಲಾಕ್ಬೋರ್ಡ್ ವಿಧಾನ ಪ್ರಮುಖ ಅಂಶಗಳು ಚಾರ್ಚ್ ಗಳನ್ನು ಬೆಳೆಸುವುದು	ಪಿಪಿಟಿ ಮತು
ಕಲಿಕಾ ವಿಧಾನ	ದೃಶ್ಯಮಾಧ್ಯಮದ ವಿಡಿಯೋಗಳನ್ನು ಬಳಸುವುದು ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿಗೆ ಚಟುವಟಿಕೆಗಳ	
	ತರ್ಚಿಸುವುದು	
	Module – 5	03 hours
1. ಕಾಲ ಮತ್ತು	ಸಮಯದ ಹಾಗೂ ಕ್ರಿಯಾಪದಗಳ ವಿವಿಧ ಪ್ರಕಾರಗಳು- Different types of tens, time and ve	rbs.
<u> </u>		
Negation		
e	,ಇತು,ಆಗಿ,ಅಲ್ಲ, ಗ್ ,ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು ವರ್ತಮಾನ ಕಾ	ಲ ವಾಕ್ಯ
2. ದ್, ತ್, ತು,	.ಇತು,ಆಗಿ,ಅಲ್ಲ, ಗ್ ,ಕ್, ಇದೆ, ಕ್ರಿಯಾ ಪ್ರತ್ಯಯಗಳೊಂದಿಗೆ ಭೂತ, ಭವಿಷ್ಯತ್ ಮತ್ತು ವರ್ತಮಾನ ಕಾ ormation of past, Future and present Tense Sentences with Verb Forms.	ಲ ವಾಕ್ಯ

• • • • • •	ಪುಸ್ತಕ ಆಧಾರಿತ ಜ	ಬ್ಲಾಕ್ಪೋರ್ಡ್ ವಿಧಾನ	ನ ಪ್ರಮುಖ (ಅಂಶಗಳು ಚಾರ್ಚ್ ಗ	ಗಳನ್ನು ಬೆಳೆಸುವುದು	ಪಿಪಿಟಿ ಮತ್ತು
ಬೋಧನೆ ಮತ್ತು ನನಿಕಾ ನಿಕಾನ		ವಿಡಿಯೋಗಳನ್ನು	ಬಳಸುವುದು	ವಿದ್ಯಾರ್ಥಿಗಳೊಂದಿ	ಗೆ ಚಟುವಟಿಕೆಗಳ	ಮುಖಾಂತರ
ಕಲಿಕಾ ವಿಧಾನ	ಚರ್ಚಿಸುವುದು					

ಬಳಕೆ ಕನ್ನಡ ಪಠ್ಯದ ಕಲಿಕೆಯಿಂದ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಆಗುವ ಅನುಕೂಲಗಳು ಮತ್ತು ಫಲಿತಾಂಶಗಳು

At the end of the course, The Student will be able to:

- 1. To understand the necessity of learning of local language for comfortable life.
- 2. To listen and understand the Kannada language properly
- 3. To speak, read and write the Kannada language as per requirement.
- 4. To communicate (converse) in the Kannada language in their daily with Kannada speakers.
- 5. To speak in polite conservation./

Assessment Details (both CIE and SEE)

		,	ory Courses :	1 Credit		
Eval	luation Type	1		Marks reduced	Min. Marks	Evaluation Details
	Internal Assessment Tests (IAT)	IAT-1 IAT-2	25 25	25		Average of two IAT's Scaled down to 25 marks
Theory Component		CCE-1	25		20	Minimum of two Assessment methods as per
	Comprehensive Continuous Evaluation(CCE)	CCE-2	25	25		22OB4.2 of regulation, Average of two CCE's scaled down to 25 marks
	Total CIE - Theory			50	20	Scale down marks of IAT and CCE to 50
	Total CIE – (Theory	+ Lab)		50	20	
	SEE (MCQ Type)		100	50	18	MCQ Type Question paper of 50 questions. Examination duration is 2 hours.
	CIE + SEE			100	40	

ಸಮಿಸ್ಸರ್ ಅಂತ್ಯದ ಪರೀಕ್ಷೆಯು ಈ ಕೆಳಗಿನಂತಿರುತ್ತದೆ Semester End Exam (SEE)

SEE will be conducted by the College as per the scheduled timetable, with common question paper from the subject.

1. The question paper will have 50 questions. Each question is set for the 02 mark.

2. SEE Pattern will be in MCQ model for 100 marks Duration of the exam is 02 Hour.

Text Book :

ಬಳಕೆ ಕನ್ನಡ ಲೇಖಕರು : ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ,

ಪ್ರಸಾರಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ ಬೆಳಗಾವಿ.

	PO	РО	PO	РО	PO	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	2	-	-	3	-	-	-	-	-
CO2	-	-	-	-	-	-	2	-	-	2	-	-	-	-	-
CO3	-	-	-	-	-	-	2	-	-	2	-	-	-	-	-
CO4	-	-	-	-	-	-	3	-	-	3	-	-	-	-	-
CO5	-	-	-	-	-	-	2	-	-	3	-	-	-	-	-

CO-PO MAPPING FOR BALAKE KANNADA

I/II Semester

Course Code	L:T:P: S CIE Marks SEE Marks		Total Marks	Exam Hours	
23IDT18/28	1:0:0:0	50	50	100	01
Total Hours of Pedagogy		15	Credits		01

INNOVATION AND DESIGN THINKING

Course Learning Objectives:

The course will enable the students to

- **1.** Understand the fundamental concept of innovation and design thinking.
- 2. Brief the basic concepts and techniques of analysis.
- **3.** Explain the concept of business process modelling in agile environment.
- 4. Understand the strategies in design thinking and innovations.
- 5. Discuss the methods of implementing design thinking in the real world.

Module-1 (3 hours)

Process of Design:

Understanding Design Thinking, Shared Model in team, based Design, Theory and practice indesign thinking, explore presentations and signers across globe, MVP or prototyping.

Module-2 (3 hours)

Tools for Design Thinking:

Real-time design interaction capture and analysis, Enabling efficient collaboration in digitalspace, empathy for design, collaboration in disturbed design.

Module-3 (3 hours)

Design thinking in IT:

Design thinking to business process modelling, agile in virtual collaboration environment, scenario based prototyping.

Module-4 (3 hours)

Design thinking for strategic innovations:

Growth, storytelling representation, strategic foresight, change, sense making, maintenance relevance, value redefinition, extreme competition, experience design, standardization, humanization, creative culture, rapid prototyping, strategy and organization, business model design.

Module-5 (3 hours)

Design thinking workshop:

Design thinking workshop Empathize, Design, Ideate, Prototype and Test.

Course Outcomes:

At the end of the course, the student will be able to:

- 1. Appreciate various design process procedure.
- 2. Analysis the problem with different techniques.
- 3. Generate and develop business process modelling scenario-based prototyping.
- 4. Identify the strategies followed in various fields of design thinking.
- 5. Draw technical drawing for design ideas.

Assessment Details both (CIE and SEE):

Scheme of Evaluation

Continuous Internal Evaluation (CIE) :

IAT-1 at the end of 8 th Week	-	25 marks
IAT-2 at the end of 13 th Week	-	25 marks
CCE-1 at the end of 4thWeek	-	25 marks
CCE-2 at the end of 9thWeek		25 marks
Total		100 Marks

The average of two IAT1 scaled down to 25 marks and average of two CCE's scaled down to 25 marks shall be considered as CIE marks of the course

Semester End Examination (SEE):

- The question paper shall be set for 50 marks. The duration of SEE is 01hour.
- The question paper will have 50 questions. The pattern of question paper is MCQ.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) Text Books:

- 1. John.R.Karsnitz, Stephen O'Brien and John P. Hutchinson, "Engineering Design", Cengagelearning (International edition) Second Edition, 2013.
- 2. Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press, 2009. Third Edition, 2012.
- 3. Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand –Improve Apply", Springer, 2011.
- 4. Idris Mootee, "Design Thinking for Strategic Innovation: What They Can't Teach You atBusiness or Design School", John Wiley & Sons 2013.

Reference Books:

- 1. Yousef Haik and Tamer M.Shahin, "Engineering Design Process", Cengage Learning, Second Edition, 2011.
- Book Solving Problems with Design Thinking Ten Stories of What Works (Columbia Business School Publishing) Hardcover – 20 Sep 2013 by Jeanne Liedtka (Author), AndrewKing (Author), Kevin Bennett (Author).

Web links and Video Lectures (e-Resources):

- www.tutor2u.net/business/presentations/. /productlifecycle/default.html
- https://docs.oracle.com/cd/E11108_02/otn/pdf/. /E11087_01.pdf
- <u>www.bizfilings.com > Home > Marketing > Product Development</u>
- <u>https://www.mindtools.com/brainstm.html</u>
- https://www.quicksprout.com/. /how-to-reverse-engineer-your-competition
- <u>www.vertabelo.com/blog/documentation/reverse-engineering</u>
- https://support.microsoft.com/en-us/kb/273814
- <u>https://support.google.com/docs/answer/179740?hl=en</u>
- <u>https://www.youtube.com/watch?v=2mjSDIBaUIM</u>
- <u>thevirtualinstructor.com/foreshortening.html</u>

- <u>https://dschool.stanford.edu/.../designresources/.../ModeGuideBOOTCAMP2010L.pdf</u>
- <u>https://dschool.stanford.edu/use-our-methods/ 6. https://www.interactiondesign.</u>
- <u>org/literature/article/5-stages-in-the-design-thinking-process 7.</u>
- http://www.creativityatwork.com/design-thinking-strategy-for-innovation/498.
- <u>https://www.nngroup.com/articles/design-thinking/ 9.</u>
- o https://designthinkingforeducators.com/design-thinking/10.

• <u>www.designthinkingformobility.org/wp-content/.../10/NapkinPitch_Worksheet.pdf</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://dschool.stanford.edu/dgift/

COs and POs Mapping (CO-PO mappings are only **Indicative**)

COs					-		POs					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	1		1	1	1			1	1	1	1
CO2	2	1	1		2		1		2	1	1	1
CO3	1	1	2	1	2	1			1	1	1	1
CO4	1	1	1	2	1	1	1		1	1	2	1
CO5	1	1	1	2	2	1	1	1	1	2	1	1