III SEMESTER (Computer Science Allied Branches)

Course Title	Mathematics for Computer Science						
Course Code	22MATS31	CIE Marks	50				
Course Type	Theory	SEE Marks	50				
Teaching Hours/Week (L: T: P: S)	2:2:0:0	Total Marks	100				
Total Hours of Pedagogy	40 hours	Exam Hours	03				
		Credits	03				

Course objectives:

The goal of the course Mathematics for Computer Science is to,

- 1. Introduce the concept of random variables, probability distributions, specific discrete and continuous distributions with practical application in Computer Science Engineering and social life situations.
- 2. Provide the principles of statistical inferences and the basics of hypothesis testing with emphasis on some commonly encountered hypotheses.
- 3. Determine whether an input has a statistically significant effect on the system's response through ANOVA testing.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students theoretical and applied mathematical skills.
- **2.** State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- **4.** You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- **5.** Encourage the students for group learning to improve their creative and analytical skills.
- **6.** Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1

Probability Distributions:

Review of basic probability theory. Random variables (discrete and continuous), probability mass and density functions. Mathematical expectation, mean and variance. Binomial, Poisson and normal distributions- problems (derivations for mean and standard deviation for Binomial and Poisson distributions only). 8 Hours.

[Text 1: 26.1, 26.2, 26.7, 26.8, 26.9, 26.10, 26.13, 26.14, 26.15, 26.16]

[RBT Levels: L1, L2 and L3]

Self-Study: Exponential distribution.

Applications: Used for Modeling and prediction, analyzing data, algorithm design, cryptography, error

detection, machine learning, computer vision, natural language processing.	, computer graphics, random number generation and					
	Module-2					
Joint probability distribution & Markov Joint probability distribution: Joint Proba expectation, covariance and correlation.	Chain: bility distribution for two discrete random variables,					
Markov Chain: Introduction to Stochastic I stochastic matrices, Markov chains, Higher Markov chains and absorbing states. [Text 3: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 5.6, 5.7] [PBT Levels: 11, 12, and 13]	Process, Probability Vectors, Stochastic matrices, Regular transition probabilities, Stationary distribution of Regular 8 Hours.					
Self-Study: Joint Probability distribution for Applications: Joint distribution for system algorithmic design and networking.	two continuous random variables. I design and maintenance decisions. Markov chain for					
	Module-3					
Statistical Inference 1: Introduction, sampling distribution, standard significances, confidence limits, simple sam comparison of large samples. Sampling varia	d error, testing of hypothesis, levels of significance, test of pling of attributes, test of significance for large samples, ables, central limit theorem and confidence limit for					
unknown mean. Test of Significance for m	eans of two large samples. 8 Hours.					
[Text 1: 27.1, 27.2, 27.3, 27.4 27.5, 27.6, 27.7, 27.8, 27.9, 27.10, 27.11, 27.12]						
[RBT Levels: L1, L2 and L3] Self-Study:						
Applications: Decision making and problem	solving, software testing and quality control					
	Module-4					
Statistical Inference 2:						
Sampling of variables-small samples, studer	nts 't' distribution, Chi-square distribution as a test of					
goodness of fit. F-Distribution. 8 Hours.						
[Text 1: 27.13, 27.14, 27.15, 27.16, 27.17, 2	27.18, 27.19]					
[RBT Levels: L1, L2 and L3] Self-Study: Fisher's Z-Distribution. Applications: Algorithm performance evaluate assurance, Biometric systems, Network secur Information retrieval, signal processing and in	ation, Software testing, Hardware testing, Quality ity, database management, Biomedical informatics, mage processing.					
	Module-5					
Design of Experiments and ANOVA: Principles of experimentation in design, Ana design. The ANOVA Technique, Basic Princ Latin-square Design, and Analysis of Co-Va [Text 1:]	alysis of completely randomized design, randomized block ciple of ANOVA, One-way ANOVA, Two-way ANOVA, ariance. 8 Hours.					
[RBT Levels: L1, L2 and L3]						
Self-Study:						
Applications: Algorithm Optimization, Netwo	ork performance, Database management, User experience					
design and Hardware design.						
Teaching-Learning Process for all modulesChalk and Talk/PowerPoint presentation/YouTube videos.						

Course Outcomes (Course Skill Set):

After successfully completing the course, the students will be able to:

- 1. Understand the basic concepts of probability, random variables, probability distribution and apply suitable probability distribution models for the given scenario.
- 2. Learn the concept of joint distribution and make use of the notion of a discrete-time Markov chain and n-step transition probabilities to solve the engineering application problem
- 3. Use statistical methodology and tools in the sampling analysis.
- 4. Compute the confidence intervals for the mean of the population by using different tests.
- 5. Apply the ANOVA test related to engineering problems.

Evaluation De							
Evaluation Type		Component	Max Marks	Marks Reduced to	Min. Marks	Evaluation Details	
Theory Component Com Ex	Internal Assessment	IAT-1	25	25		Average of two IATs, Scaled down to 25 marks	
	Tests (IAT)	IAT-2	25	1			
	Comprehensive Continuous Evaluations (CCE)	CCE-1	25		20	Any two Assessment methods as per 220B4.2	
		CCE-2	25	25		of regulations. Average of two CCEs, scaled down to 25 marks	
Total CIE -Theory				50	20		
SEE			100	50	18	Conducted for 100 marks And scaled down to 50.	
	CIE + SEE			100	40		

Suggested Learning Resources:

Text Books:

- 1. **B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2021.
- 2. **Ronald E. Walpole, Raymond H Myers, Sharon L Myers & Keying Ye** "Probability & Statistics for Engineers & Scientists", Pearson Education, 9th edition, 2017.
- 3. Seymour Lipschutz and Marc Lars Lipson: "Probability", (Chapters: 5 and 8), McGraw Hill Education (India) Private Limited, Chennai, Special Indian Edition, 2010.

Reference Books:

- 1. **Erwin Kreyszig**, "Advanced Engineering Mathematics", John Wiley & Sons,9th Edition, 2006.
- 2. **Peter Bruce, Andrew Bruce & Peter Gedeck** "Practical Statistics for DataScientists" O'Reilly Media, Inc., 2nd edition **2020**.
- 3. **G Haribaskaran** "Probability, Queuing Theory & Reliability Engineering", LaxmiPublication, Latest Edition, 2006.
- 4. **Irwin Miller & Marylees Miller,** John E. Freund's "Mathematical Statistics with Applications" Pearson. Dorling Kindersley Pvt. Ltd. India, 8th edition, 2014.
- 5. S C Gupta and V K Kapoor, "Fundamentals of Mathematical Statistics", S

Chand andCompany, Latest edition.

- Robert V. Hogg, Joseph W. McKean & Allen T. Craig. "Introduction to Mathematical Statistics", Pearson Education 7th edition, 2013.
- 7. Jim Pitman. Probability, Springer-Verlag, 1993.
- 8. **Sheldon M. Ross,** "Introduction to Probability Models" 11th edition. Elsevier, 2014.
- 9. A. M. Yaglom and I. M. Yaglom, "Probability and Information". D. Reidel PublishingCompany. Distributed by Hindustan Publishing Corporation (India) Delhi, 1983.
- 10. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", UniversalBook Stall, (Reprint), 2003.
- 11. S. Ross, "A First Course in Probability", Pearson Education India, 6th Ed., 2002.
- 12. **W. Feller**, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 3rd Ed., 1968.
- 13. **N.P. Bali and Manish Goyal**, A Textbook of Engineering Mathematics, LaxmiPublications, Reprint, 2010.
- 14. Veerarajan T, Engineering Mathematics (for semester III), Tata McGraw-Hill, NewDelhi, 2010.

E-Resources:

- <u>http://.ac.in/courses.php?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- <u>http://academicearth.org/</u>
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

CO- PO Mapping :

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
22MATS31.1	3	3	1									
22MATS31.2	3	3	2									
22MATS31.3	3	3										
22MATS31.4	3	3										
22MATS31.5	2	3	1									
Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped												