III SEMESTER

Course Title	Mathematics for Electronics and communication Engineering.						
Course Code	22MATE31	CIE Marks	50				
Course Type	Theory	SEE Marks	50				
Teaching Hours/Week (L: T: P: S)	2:2:0:0	Total Marks	100				
Total Hours of Pedagogy	40 hours	Exam Hours	03				
		Credits	03				

Course objectives:

The goal of the course **Mathematics** for Electronics and communication Engineering is to,

- Learn to use the Fourier series to represent periodical physical phenomena in engineering analysis and to enable the student to express non-periodic functions to periodic functions using the Fourier series and Fourier transforms.
- Analyze signals in terms of Fourier transforms and Z-Transform
- Have an insight into solving ordinary differential equations by using Laplace transform techniques.
- To find the association between attributes and the correlation between two variables

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- **1.** In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- **3.** Support and guide the students for self–study.
- **4.** You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1

Fourier series and practical harmonic analysis:

Periodic functions, Dirichlet's condition. Fourier series expansion of functions with period 2π and with arbitrary period: periodic rectangular wave, Half-wave rectifier, rectangular pulse, Saw tooth wave.

Half-range Fourier series. Triangle and half range expansions, Practical harmonic analysis, and variation

of periodic current.	8 Hours.
[Text 1: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.11]	
[RBT Levels: L1, L2 and L3]	
Self-Study: Complex form Fourier series.	
Applications: Signal filtering, noise removal, compression of audio signals and speech re	cognition.
Module-2	
Infinite Fourier Transforms:	
Infinite Fourier transforms, Fourier cosine and sine transforms, Inverse Fourier transform	ns,
Inverse Fourier cosine and sine transforms, discrete Fourier transform (DFT), Fast Fourie	r
transform (FFT).	8 Hours.
[Text 1: 22.1, 22.2, 22.4] [Text 2: 11.9]	
[RBT Levels: L1, L2 and L3]	
Self-Study: Properties of Fourier transforms.	frignals
Applications: Signal processing, image processing, modulation and demodulation of	
Z -Transforms:	
Definition, Z-transforms of basic sequences and standard functions. Properties: Linearity	v scaling first
and second shifting properties, multiplication by n. Initial and final value theorem. Inven	-
	8 Hours.
Z- transforms. Application to difference equations.	o nours.
[Text 1: 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.7, 23.8, 23.9, 23.15, 23.16, 31.1, 31.2]	
[RBT Levels: L1, L2 and L3]	
Self-Study:	
Applications: Digital signal processing, analyze and process digital data.	
Module-4	
Existence and Uniqueness of Laplace transform, transform of elementary functions.	
Properties–Linearity, Scaling, t-shift property, s-domain shift, differentiation in the s-dor	main
division by t. Laplace transform of periodic functions (square wave, saw-tooth wave, tria	
wave, full & half wave rectifier), Heaviside Unit step function and Unit impulse function.	-
Inverse Laplace Transforms: Definition, properties, evaluation using different methods,	
convolution theorem (without proof), problems, and applications to solve ordinary diffe	rential
equations.	8 Hours.
[Text 1: 21.1, 21.2, 21.3, 21.4, 21.5, 21.7, 21.9, 21.10,21.12, 21.13, 21.14, 21.15, 21.17, 2	
[RBT Levels: L1, L2 and L3]	
Self-Study: Verification of convolution theorem. Solution of simultaneous first-order dif	ferential
equations.	
Applications: Signals and systems, Control systems, LR, CR and LCR circuits.	
Module-5	
Curve fitting, Correlation and Regressions:	
Principles of least squares, Curve fitting by the method of least squares in the form $y = a$	a + bx ,
$y = a + bx + cx^2$ and $y = ax^b$. Correlation, Coefficient of correlation, Lines of regression,	. Angle betweei
$y = a + bx + cx^2$ and $y = ax^b$. Correlation, Coefficient of correlation, Lines of regression, regression lines, standard error of estimate, rank correlation.	Angle betweer 8 Hours.

[RBT Levels: L1, L2 and L3]

Self-Study: Fitting of the curves $y = ab^x$ and $y = ae^{bx}$.

Applications: Data visualization, Lighting control, comparison and estimation.

Teaching-Learning Process for all	Chalk and Talk/PowerPoint presentation/YouTube						
modules	videos.						

Course Outcomes(Course Skill Set):

After successfully completing the course, the students will be able to:

- 1. Demonstrate the Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing, and field theory.
- 2. Use Fourier transforms to analyze problems involving continuous-time signals
- 3. Apply Z-Transform techniques to solve difference equations
- 4. Understand the concept of Laplace transform and to solve initial value problems.
- 5. Make use of correlation and regression analysis to fit a suitable mathematical model for statistical data

Evaluation Details:

Evaluation Type		Component	Max Marks	Marks Reduced to	Min. Marks	Evaluation Details
Theory Component	Internal Assessment	IAT-1	25	25		Average of two IATs, Scaled down to 25 marks
	Tests (IAT)	IAT-2	25			
	Comprehensive Continuous	CCE-1	25			Any two Assessment methods as per 220B4.2
	Evaluations (CCE)	CCE-2	25	25		of regulations. Average of two CCEs, scaled down to 25 marks
Total CIE -Theory				50	20	
SEE			100	50	18	Conducted for 100 marks And scaled down to 50.
CIE + SEE				100	40	

Suggested Learning Resources:

Text Books:

- **1. B. S. Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2018.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016.

Reference Books:

- 1. B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd reprint, 2016.
- 3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th

Ed., 2022..

- C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co. Newyork, 6th Ed., 2017.
- **5. Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd 2015.
- 6. H.K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S.Chand Publication 3rd Ed., 2014.
- **7.** James Stewart: "Calculus" Cengage publications, 7th edition, 4th Reprint 2019.

E-Resources:

- http://.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- <u>http://academicearth.org/</u>
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

CO- PO Mapping :

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO11	PO12
22MATE31.1	3	3	1									
22MATE31.2	3	3	2									
22MATE31.3	3	3										
22MATE31.4	3	3										
22MATE31.5	2	3	1									
Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped										ped		