III SEMESTER (Civil Engineering)

Course Title	NUMERICAL TECHNIQUES, STATISTICS AND PROBABILITY DISTRIBUTIONS.						
Course Code	22MATC31	CIE Marks	50				
Course Type	Theory	SEE Marks	50				
Teaching Hours/Week (L: T: P: S)	2:2:0:0	Total Marks	100				
Total Hours of Pedagogy	40 hours	Exam Hours	03				
		Credits	03				

Course objectives:

The goal of the course Numerical Techniques, Statistics and Probability Distributions for civil engineering is to

- Have an insight into Statistical methods, Correlation and regression analysis.
- Learn the concept of solving the ordinary differential equations arising in engineering applications, using numerical methods.
- Develop the probability distribution of discrete and continuous random variables, Markov chain, Joint probability distribution occurs in civil engineering.
- Provide the principles of statistical inferences and the basics of hypothesis testing with emphasis on some commonly encountered hypotheses.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- **3.** Support and guide the students for self–study.
- **4.** You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1

Curve Fitting and Statistical Methods.:

Curve Fitting: Curve fitting by the method of least squares, fitting the curves of the forms

y = ax + b, $y = ax^2 + bx + c$ and $y = ax^b$

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation, problems. Regression analysis, lines of regression, problems. (8 Hours)

[Text 1: 24.1, 24.4, 24.5, 24.6, 25.12, 25.13, 25.14, 25.16]

Self-Study: Fitting of the curves $y = ab^x$ and	y = ae^{bx} . Angle between two regression lines, problems.						
(RBT Levels: L1, L2 and L3)							
	Module-2						
Numerical Solution of Simultaneous and Secon	d order Ordinary Differential						
Equations:							
Numerical solutions of simultaneous first order differential equations-Picard's method, Taylor's							
series method and Runge-Kutta method (No derivations of formulae). Second-order differential							
equations - Runge-Kutta method and Milne's predictor and corrector method (No derivations of							
formulae).	(8 Hours)						
Self-study: Solution of Laplace's equation using	standard five-point formula.						
(RBT Levels: L1, L2 and L3)							
	Module-3						
Probability Distributions: Review of basic probability theory, Random vari	iables (discrete and continuous), probability mass and						
density functions. Mathematical expectation m	lean and variance. Binomial Poisson and normal distributions -						
problems (derivations for mean and standard de	eviation for Binomial and Poisson distributions only)-Illustrative						
examples	(8 Hours)						
[Text 1: 26.1. 26.2. 26.7. 26.8. 26.9. 26.10. 26.1	3. 26.14. 26.15. 26.16]						
Self-study: Exponential distribution.	-, - ,,						
(RBT Levels: L1, L2 and L3)							
	Module-4						
Joint probability distribution & Markov Cha	ain:						
Joint probability distribution: Joint Probabi	lity distribution for two discrete random variables,						
expectation, covariance and correlation.							
Markov Chain: Introduction to Stochastic Pr	rocess. Probability Vectors. Stochastic matrices. Regular						
stochastic matrices. Markov chains, Higher	transition probabilities. Stationary distribution of Regular						
Markov chains and absorbing states.	(8 Hours)						
Self-Study: loint Probability distribution for t	wo continuous random variables.						
(BBT Levels: L1. L2 and L3)							
	Module-5						
Sampling Theory:							
Damping meory.	error Type-Land Type-II errors Test of hypothesis for means						
student's t-distribution. Chi-square distribution	as a test of goodness of fit						
Text 1.27 1 27 2 27 2 27 4 27 5 27 7 27 0	27 10 27 11 27 12 27 13 27 14 27 15 27 16 27 17 27 10						
Salf-Study: Point estimation and interval estimation	tion						
(BBT Levels: L1, L2 and L3)							
	Chalk and Talk (DowerDoint proceptation (VowTwhe						
reaching-Learning Process for all							
mouules	VIUC05.						

Course Outcomes (Course Skill Set):

After successfully completing the course, the students will be able:

- 1. Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- 2. To solve mathematical models represented by initial or boundary value problems involving ordinary differential equations.
- 3. Apply discrete and continuous probability distributions in analyzing the probability models arising in the civil engineering field.
- 4. Use Markov's chains in analyzing the probability models arising in civil engineering field and construct joint probability distributions.
- 5. Demonstrate the validity of testing the hypothesis.

Evaluation Details:

Evaluation Type		Component	Max Marks	Marks Reduced to	Min. Marks	Evaluation Details
Theory Component Component Cont Evalu (C	Internal Assessment	IAT-1	25	25		Average of two IATs, Scaled down to 25 marks
	Tests (IAT)	IAT-2	25		20	
	Comprehensive Continuous	CCE-1	25			Any two Assessment methods as per 220B4.2
	Evaluations (CCE)	CCE-2	25	25		of regulations. Average of two CCEs, scaled down to 25 marks
Total CIE -Theory				50	20	
SEE		100	50	18	Conducted for 100 marks And scaled down to 50.	
CIE + SEE			100	40		

Suggested Learning Resources:

Text Books:

- 1. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2018.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016.
- **3. Seymour Lipschutz and Marc Lars Lipson:** "Probability", (Chapters: 5 and 8), McGraw Hill Education (India) Private Limited, Chennai, Special Indian Edition, 2010.

Reference Books:

- 1. B.V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd reprint, 2016.
- N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.

- **4. C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw Hill Book Co. Newyork, 6th Ed., 2017.
- **5. Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India) Pvt. Ltd 2015.
- **6. H.K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication 3rd Ed., 2014.
- 7. James Stewart: "Calculus" Cengage publications, 7th edition, 4th Reprint 2019.

E-Resources:

- <u>http://.ac.in/courses.php?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

CO- PO Mapping:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
22MATC31.1	3	3	1									
22MATC31.2	3	3	2									
22MATC31.3	3	3										
22MATC31.4	3	3										
22MATC31.5	2	3	1									
Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped, Level 0- Not Mapped												