CV Scheme and Syllabus 2020-21

NAGARJUNA COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous College under VTU) (NAAC Accredited with 'A' Grade, NBA Accredited)

Syllabus - V to VIII Semester B.E. Outcome Based Education Curriculum

2020-2021

Department of Civil Engineering NAGARJUNA COLLEGE OF ENGINEERING & TECHNOLOGY Mudugurki Village, Venkatagiri Kote Post, Devanahalli taluk, Bangalore district - 562 164

Sl. No	Course Code	Course	Teaching Department	L-T-P-S (Hrs/week)	Total Credits	Marks
1	18CVI51	Transportation Engineering (IC)	CE	3-0-2-0	4	100
2	18CVI52	Fluid Mechanics (IC)	CE	3-0-2-0	4	100
3	18CVT53X	Foundation Elective – IV	CE	4-0-0-0	4	100
4	18EET54X	Engineering Elective – V	CE	4-0-0-0	4	100
5	5 18CVT55 Structural Analysis-II		CE	3-0-0-0	3	100
6	18CVL56	Cad Lab.	CE	1-0-2-0	2	100
7	18CVH57	General Aptitude	CE	2-0-0-0	2	100
8	18CVT58	Environment Science	CE	1-0-0-0	1	100
		Total		21-0-6-0	24	800

Fifth Semester B.E. - Scheme

Foundation Elective – IV				
Sl. No	Course Code	Course		
1	18CVT531	Railways, Harbours & Tunnels		
2	18CVT532	Hydrology and Irrigation Engineering		
3	18CVT533	Natural Disaster Mitigation and Management		
4	18CVT534	Construction Management and Engineering Economics		
5	18CVT535	Design of Masonry Structures		
6	18CVT536	Rural Water Supply and Sanitation		

	Engineering Elective – V				
Sl. No	Course Code	Course			
1	18 EET 541	Solid Waste Management(CV)			
2	18 EET 542	Modeling of Residential Building using AI(CSE)			
3	18 EET 543	Metal Forming Process (ME)			
4	18 EET 544	C^{++} (EC)			
5					

IC – Integrated Course	L - Lecture	T - Tutorials	P - Practical	S - Self Study
------------------------	-------------	---------------	---------------	----------------

Sl. No	Course Code	Course	Teaching Department	L-T-P-S (Hrs/week)	Total Credits	Marks
1	18CVI61	Limit State Design of Reinforced Concrete & Steel Structures (IC)	CE	3-0-2-0	4	100
2	18CVT62	Geotechnical Engineering	CE	4-0-0-0	4	100
3	18CVI63	Environmental Engineering (IC)	CE	3-0-2-0	4	100
4	18CVT64X	Foundation Elective -VI	CE	3-0-0-0	3	100
5	18EET65X	Engineering Elective –VII	CE	4-0-0-0	4	100
6	18HOE66X	Open Electives-VIII	CE	2-0-0-0	2	100
7	18CVL67	Extensive Survey Camp	CE	1-0-2-0	2	100
8	18CVH68	Technical Aptitude and GD	CE	1-0-0-0	1	100
		Total		21-0-6-0	24	800

Sixth Semester B.E. - Scheme

	Foundation Elective -VI				
Sl. No	Courses Code	Course			
1.	18CVT641	Pavements Materials & construction			
2.	18CVT642	Traffic Engineering			
3.	18CVT643	Hydraulics & Hydraulics Machineries			
4.	18CVT644	Industrial Waste Water Treatment			
5.	18CVT645	Repair and Rehabilitation of Structures			
6.					

	Engineering Elective –VII				
Sl. No	Course Code	Course			
1	18 EET 651	Remote sensing & GIS (CV)			
2	18 EET 652	Data-Driven Models for Early Prediction of Construction Time (CSE)			
3	18 EET 653	Non Destructive Testing (ME)			
4	18 EET 654	Python (EC)			

	Open Elective – VIII			
Sl. No	Courses Code	Course Name		
1	18 HOE661	Lab View – Level 1		
2	18 HOE 662	Yoga Meditation		
3	18 HOE 663	Martial Arts		
4	18 HOE 664	Music (Carnatic / Instrumental)		
5	18 HOE 665	Dance		
6	18 HOE 666	Sports		
8	18 HOE 668	Basics of Photography		
9	18 HOE 669	Online Certificate courses from NPTEL		

Sl. No	Subject Code	Subject	Teaching Department	L-T-P-S (Hrs/week)	Total Credits	Marks
1	18 CVT71	Estimation and Valuation	CE	3-0-0-0	3	100
2	18 CVT72X	Foundation Elective- IX	CE	3-0-0-0	3	100
3	18EET73X	Engineering Elective – X	CE	3-0-0-0	3	100
4	18 HOE74X	Open Electives- XI	CE	3-0-0-0	3	100
5	18 HOE75X	Open Electives- XII	CE	3-0-0-0	3	100
6	18 CVL76	Concrete Laboratory	CE	1-0-2-0	2	100
7	18 CVL77	Geo Technical Engineering Lab	CE	1-0-2-0	2	100
8	18 CVP78	Project Phase I	CE	3-0-2-0	4	100
		Total		20-0-6-0	23	800

Seventh Semester B E Scheme

	Foundation Elective - IX				
Sl. No Course Code Course		Course			
1	18CVT721	Water Resources Engineering			
2	18CVT722	Pavement and Highway Geometric Design			
3	18CVT723	Pre Stressed Concrete Structures			
4	18CVT724	Design and Detailing of RC and Steel Structures			
5	18CVT725	Sub Surface Exploration and Ground Improvement Techniques.			
6	18CVT726	Basics of Earthquake Engineering.			

Engineering Elective - X				
Sl. No Courses Code Course		Course		
1	18 EET 731	Smart Cities and Application of IOT.(CV)		
2	18 EET 732	Software and Computer Applications for Civil Engineering(CSE)		
3	18 EET 733	Biomass Energy Systems(ME)		
4	18 EET 734	AI&ML(EC)		

	Open Elective - XI					
Sl. No	Courses Code	Course				
1	18HOE741	Tax Management				
2	18HOE 742	Assessment of Building Energy Performance (Offered by ASHRAE)				
3	18 HOE 743	Ground Water Hydrology				
4	18 HOE 744	Online Certificate courses from IITs/IISc/SWAYAM				
5	18HOE 745	Online Certificate courses from NPTEL				

	Open Elective - XII					
Sl. No Courses Code Course						
1	18HOE 751	Small & Medium Enterprise Management				
2	18 HOE 752	Animation & Multimedia Engineering				
3	18 HOE 753	Basics of RS,GIS & GNSS				

IC – Integrated Course	L - Lecture	T - Tutorials	P - Practical	S - Self Study
------------------------	-------------	---------------	---------------	----------------

Sl. No	Subject Code	Subject	Teaching Department	L-T-P-S (Hrs/week)	Total Credits	Marks
1	18CVI81	Professional Practice / Internship	CE	2-0-2-0	3	100
2	18CVP82	Project Phase – II & III	CE	5-0-2-0	6	200
3	18CVP83	Evaluation and Viva Voce (External)	CE	3-0-2-0	4	100
4	18CVS84	Technical Seminar	CE	1-0-0-0	1	100
		Total		11-0-6-0	14	500

Eighth Semester B E Scheme

IC – Integrated Course L - Lecture	T - Tutorials	P - Practical	S - Self Study
------------------------------------	---------------	---------------	----------------

Transportation Engineering (IC)						
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Code	
18CVI51	3:0:2:0	4	50:50	3 Hours	FC	

Course Objectives: This course will enable students to :

• Study the importance and characteristics of road transport and various committee.

• Understand the recommendations, various road patterns and road development programs in India

India.

- Analyze requirements of Ideal alignment and various geometrical design factors.
- Gain knowledge on Pavement materials and its properties.
- Identify the importance of Highway Drainage system and Highway Economics.

Syllabus

Module – I

Principles of Transportation Engineering: Importance of transportation, Different modes of transportation and comparison, Characteristics of road transport, Jayakar committee recommendations and implementation – Central Road Fund, Indian Roads Congress.

Highway Development and Planning: Road types and classification, road patterns, planning surveys, master plan – saturation system of road planning, phasing road development in India, Present scenario of road development in India (NHDP and PMGSY) and in Karnataka (KSHIP), Road development plan - vision 2021. 10Hours

Module – II

Highway Alignment and Surveys: Ideal Alignment, Factors affecting the alignment, Engineering surveys- Map study, Reconnaissance, Preliminary and Final location and detailed survey, Reports and drawings for new and re-aligned projects.

HighwayGeometricDesign-I:Importance,Terrainclassification,Designspeed,Factorsaffectinggeometricdesign,Crosssectionalelements;Camber-width ofpavement-Shoulders,Width offormation-Right of way,Typical cross-sections.10Hours

Module – III

Highway Geometric Design-II: Sight Distance-Restrictions to sight distance- Stopping sight distance-Overtaking sight distance- overtaking zones- Examples on SSD and OSD- Sight distance at intersections, Horizontal alignment-Radius of Curve- Super elevation Examples, Vertical alignment, summit and valley curves with examples. **10 Hours**

Module-IV

Pavement Materials and Design Sub grade soil: Desirable properties - HRB soil classificationdetermination of CBR and modulus of sub grade reaction - Examples on CBR.

Aggregates- Desirable properties and list of tests, **Bituminous materials**- Explanation on Tar, bitumen, List of tests on bituminous materials. Pavement types, component parts of flexible and rigid pavements and their functions, Rigid pavement- Westergaard's equations for load and temperature stresses, Examples. **10 Hours**

Module-V

Highway Drainage: Significance and requirements, Surface drainage system and design Examples sub surface drainage system.

Highway Economics: Highway user benefits, Economic analysis - annual cost method- Benefit CostRatio method-NPV-IRR methods- Examples.10 Hours

Sl No.	Name of the Experiment
I	Test on Aggregates
1	Aggregate crushing value
2	Aggregate abrasion value (Los Angels Abrasion Test)
3	Aggregate Impact value
4	Shape tests on aggregates (Flaky, elongation)
I	Test on bituminous materials and mixes
5	Specific gravity of bitumen
6	Penetration test on bitumen
7	Ductility test on bitumen
8	Viscosity test on bitumen
9	Softening point test on bitumen
10	Flash and fire point test on bitumen
11	Marshall Stability tests on bituminous

Course Outcomes: After successful completion of the course, students will be able to,

- Compare the different modes and characteristics of road transport hat includes various features and committees.
- Recognize different road patterns and road development programs in India.
- Analyze factors influencing road alignment, different types of road surveys and factors influencing geometric design.
- Develop the knowledge of horizontal and vertical alignment, Pavement materials and its properties.
- Design drainage for roads and prepare the total estimation of the project.

Text Books:

- Dr. S.K. Khanna, Dr. C.E.G Justo, A. Veraraghvan, "Highway Engineering" Revised 10th Edition, Nem Chand & Sons (2017)
- L.R. Kadiyali, "Principles And Practices Of Highway Engineering"(Including Expressways And Airport Engineering), Khanna Publishers(2005)
- Transportation Engineering, K P Subramanium, ISBN:978-8174092205 2nd edition, 2011, Scitech Publications, Chennai
- Introduction to Transportation Engineering, James H Banks, ISBN-13: 978-0070702462 2nd edition, 2004, Mc. Graw. Hill Pub. New Delhi
- Construction Equipment and its Management- S.C. Sharma, (Chapters 1,2,3,4,6,7) SBN:9788174092281 8174092285 xvi+893 Yr. of Pub.2013 Paper Back English Khanna Publishers, Delhi.

Reference Books:

- IRC Codes, Indian Road Congress Publications
- "Specifications for Roads and Bridges"-MoRT&H Specifications, Indian Road Congress

Publications(2013)

- C. Jotin Khisty, B. Kent lal, "Transportation Engineering, PHI Learning Pvt. Ltd", 3rd Edition(2002)
- E.J. Yoder, M.W. Witczak, "Road materials & Pavement Design", Wiley India Pvt Ltd; 2nd edition (2011)
- James H Banks, "Introduction to Transportation Engineering", McGraw. Hill Publicatons(2010)

- https://www.fhwa.dot.gov/environment/publications/flexibility/ch01.cfm
- http<u>s://www.railelectrica.com/traction-mechanics/train-grade-curve-and-</u> acceleration-resistance-2/
- <u>http://nptel.ac.in/courses/105104098/TransportationII/lecture6/7slide.htm/</u>
- <u>http://www.aboutcivil.org/highway-drainage-design-guidelines-structures.html</u>
- <u>http://nptel.ac.in/courses/105104098/45</u>
- https://www.youtube.com/watch?v=qbO7ZMfCDWI

Fluid Mechanics (IC)							
Course Code	L-T-P (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type		
18CVI52	3-0-2	4	50:50	3 hours	FC		
Course Object	Voge						

Course Objectives:

The students will be able to:

- Understand fluid properties, fluid statics and fluid pressure.
- Analyse the system in terms of kinematic concepts related to fluid flow.
- Compute the discharge through pipes, notches and weir
- Design of uniform open channels of different cross sections including most economical sections
- Compute force exerted by jet on different type of vanes and to design impulse turbine and to know operation characteristics under different operating conditions

Syllabus

Module – I

Fluids & Their Properties: Introduction to fluids, Systems of units. Properties of fluid; Mass density, Specific weight, Specific gravity, Viscosity, Cohesion, Adhesion, Surface tension & Capillarity. Fluid as a continuum, Newton's law of viscosity (theory & problems).Capillary rise in a vertical tube and between two plane surfaces (theory & problems). Vapor pressure of liquid, surface tension, pressure inside a water droplet, pressure inside a soap bubble and liquid jet. Numerical problems.

Fluid Pressure and Its Measurements: Definition of pressure, Pressure at a point, Pascal's law, Variation of pressure with depth. Measurement of pressure using simple, differential & inclined manometers (theory & problems). 10 Hrs

Module – II

Hydrostatic Pressure on Surfaces: Introduction, Definitions Total pressure and Centre of pressure, equations for hydrostatic force and depth of centre of pressure for Vertical and inclined submerged plane surfaces-Problems. Practical applications of Total pressure and centre of pressure.

Kinematics and Dynamics of Fluid Flow: Introductions, methods of describing fluid motion, types of fluid flow, streamline, path line. Three dimensional continuity equations in Cartesian Coordinates (derivation and problems), Bernoulli's equation using Euler's equation of motion with assumptions and limitations (Problems).

10 Hrs

Module – III

Flow through pipes

Head losses - Major loss & Minor loss, Darcy - Weisbach Equation, Hydraulic Gradient line, Total Energy Line, Series and Parallel Network of pipes, Numerical Problems.

Orifice and mouth piece: Hydraulic coefficients, Concept of Orifice and Mouthpiece (No Numerical Problems).

Notches and Weirs: Definition of Notch and Weir, Flow through V-notch, Rectangular weir, Cippoletti weir, Corrections for Velocity of Approach, End Contractions, Numerical Problems. 10 Hrs

Module – IV

Open Channels Flow: Calculation of Velocity using Chezy's

Calculation of Velocity using Chezy's and Manning's equations, Hydraulic Efficient Channels: Rectangular and Trapezoidal channel, Numerical Problems. Specific Energy, Critical Depth, Froude's Number, Specific Energy Diagram, Subcritical and Supercritical flows, Alternative Depths, Hydraulic Jump, Numerical Problems.

10 Hrs

Module – V

Impact of Jet on Vanes: Impact of jet on vanes, Force exerted by the jet on a straight & curved vane (Stationary & Moving). Velocity triangles, Numerical Problems.

Pelton wheel: Components and working principle. Maximum power, Efficiency, working proportions-problems.

Francis Turbines: Components and working principle. Draft Tube: Types, Efficiency of

Draft tube and problems.

Laboratory Experiments

List of Experiments

Cycle 1

- 1. Calibration of V- Notch
- 2. Calibration of Rectangular Notch
- 3. Calibration of Broad Crested Weir and Ogee Weir

Cycle 2

- 4. Orifice/mouth piece
- 5. Calibration of Venturimeter
- 7. Pipe losses

Cycle 3

- 8. Impact of jet on vanes
- 9. Centrifugal pump
- 11.Pelton wheel turbine
- 12.Kaplan Turbine

Course Outcomes:

Students will be able to

- Solve problems on fluid properties, fluid statics and fluid pressure.
- Analyse the system in terms of kinematic concepts related to fluid flow
- Compute the discharge through pipes, notches and weir
- Design of uniform open channels of different cross sections including most economical sections
- Compute force exerted by jet on different type of vanes and to design impulse turbine and to know operation characteristics under different operating conditions

Text Books:

- P.N. Modi & S.M. Seth, "Hydraulics and Fluid Mechanics", Standard Book House
- Madan Mohan Das, "Fluid Mechanics and Turbo Machines", PHI Learning Pvt. Ltd. 2011
- R.K. Bansal: "A Text book of Fluid Mechanics and Hydraulic Machines", 9th Edition, 2014, Laxmi Publications, New Delhi, ISBN: 978-81-318-0815-3.

Reference Books:

- K Subramanya, "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Co. Ltd.
- K Subramanya, "Fluid Mechanics and Hydraulic Machines-problems and solutions", Tata McGraw Hill Publishing Co. Ltd.

E-Resources:

- <u>https://nptel.ac.in/courses/105/103/105103095/</u>
- <u>https://nptel.ac.in/courses/105/105/105105203/#</u>
- <u>https://nptel.ac.in/courses/105/103/105103096/</u>

10Hrs

Railways, Airport, Harbor and Tunnels							
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type		
18CVT531	3:0:0:0	3	50:50	3 hours	PEC		
Course Objecti	ves: This course	will enable stud	lents to :				
 Know about geometric of Know about design. Gain the know about design. 	ut the Tractive re elements of a tra ut the layout of a	sistances & supe ck. n airport, site se es of Tunnels &	l various compon er elevation involv lection, aircraft cl methods of tunne s.	ved for movement	nt of train &		
		Sylla	ibus				
		Modu	ıle – I				
suitability of di Sleepers, Ballas	fferent gauges, (t and Fixtures - ners-Fish plates-	Coning of whee functions, types	as transportation ls, components o , requirements. F Calculation of qua	f the permanent unctions, require	way - Rails ements, Tracl		
		Modu					
			Fractive resistance	· · ·			
eficiency, Negati	ive super elevation	n, Points and croa	ssings, Salient feat	ures of Metro trai	nsport.		

deficiency, Negative super elevation, Points and crossings, Salient features of Metro transport. **Geometric Design of Railways:** Necessity, Safe speed on curves, Cant-cant deficiency- negative cantsafe speed based on various criteria, (both for normal and high speed tracks) Transition curve, Gradient and types, grade compensation, Examples on above. **10 Hours**

Module – III

Airport Engineering: Features and Role of Airways in transportation, Aircraft characteristics, Air transportation planning, wind rose diagram, site selection, Airport components and diagram, basic length and corrected length of runway length, Taxiway - Turning radius, exit taxiway, design factors and elements. 10 Hours

Module-IV

Tunnel Engineering And Harbours: Advantages and disadvantages, Different shapes of tunnels, Surveying-Transferring centre line, and gradient from surface to inside the tunnel working face, Tunneling in rocks-Drift method, Heading and benching method, Tunneling methods in soils-Needle beam, Liner plate, Tunnel lining, Tunnel ventilation, Pilot tunneling.

10 Hours

Module – V

Harbours and Docks: Types, components, Natural phenomenon affecting the design of harbours. Wind, wave and tides. Currents, Breakwaters - types, wharf and quays, Jetties and piers. Spillways. Docks: Dry dock and wet docks, Slipways, Navigational aids, warehouse and transitshed. 10 Hours

Course Outcomes: After successful completion of the course, students will be able to,

- Identify the importance of Railway Engineering in transportation sector.
- Design the various Geometrics of railways..
- Analyze the components of Airport design.

- Demonstrate the different types of tunnels and methods of tunneling.
- Identify the importance of Harbour and dock construction.

Text Books:

- S.C. Saxena and S.P Arora: "Railway Engineering", (Chapters 1-11, 15), 7th Edition, Dhanpat Rai Publications, New Delhi, ISBN: 9788189928834.
- S.K Khanna, M.G Arora, S.S Jain Airport Planning and Design, (Chapters 1,3,5-8), 6th Edition, Nem Chand Bros Roorkee, ISBN: 81-85240-68-10.
- R. Srinivasan: "Harbour, Dock and Tunnel Engineering", (Chapters 1-3), Charaotar Publishing House, 28th Edition, 2016, ISBN: 9789385039195.

Reference Books:

- J S Mundery: "Railway Track Engineering", (Chapters 1-5), Tata McGraw-Hill Education, 4th Edition, 2009.
- Hasmukh P. Oza, Gautam H. Oza "Dock and Harbour Engineering", (Chapters 8-12,17,21), 7th Edition, Charotar Publishing house Pvt. Ltd., Gujarat, India, ISBN: 9789380358789.

- http:nptel.ac.in/courses/105107123/
- https://www.railelectrica.com/traction-mechanics/train-grade-curve-and- accelerationresistance-2/
- http://www.faa.gov/airports/engineering/
- https://sites.google.com/a/venusict.org/dha/material

Water Resources Engineering								
Course Code	L-T-P (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type			
18CVT532	3-0-2	3	50:50	3 hours	PEC			
Course Objecti	Course Objectives:							

The students will be able to:

- Prepare the students for a successful career as hydrologist and water resources engineers.
- Develop the ability among students to synthesis data and technical concepts for application in hydrology and water resources engineering.
- Provide students with a sound foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, analyze, solve engineering problems and to prepare them for their career.
- Provide students with advanced tools of data collection and the analysis of the same with respect to water resources.
- Promote student awareness for the lifelong learning and to introduce them professional ethics and codes of professional practice in water resources management.

Syllabus

Module-I

Basics of Hydrometeorology: Hydrologic cycle, Global water budget, Practical applications – Hydrometeorology, Air front, cyclones, Formation of precipitation, Types and forms of precipitation, Climate and Weather Meteorological Observations.

Precipitation: Measurement of rainfall, Radar Measurement of rainfall, Rainfall Hyetograph, Intensity Duration and Frequency analysis, Consistency, Missing data, Average depth of rainfall analysis (Theory and Problems). **08 Hrs**

Module-II

Surface Runoff: Concept of catchment, Linear, Areal and Relief Aspects, Detailed study of Runoff process,
Factors affecting Runoff, Runoff estimation, Strange and SCS methods, yield estimation.08 Hrs

Module – III

Ground Water: Groundwater in Hydrologic Cycle, Origin of groundwater, Rock properties affecting groundwater, Types of aquifer, Darcy's law, coefficient of permeability, groundwater flow rates, permeability formulae, laboratory and field measurement of permeability, Ground water movement. **08 Hrs**

Module-IV

Water Harvesting And Conservation: Water Harvesting Techniques, Micro Catchments, Design of Small Water Harvesting Structures – Farm Ponds, Percolation Tanks, Yield from a Catchment, Site selection for artificial recharge, Rain water and Runoff Harvesting in Rural and Urban Areas, Reservoir Sedimentation

08 Hrs

08Hrs

Module – V

Watershed Management: Project Proposal Formulation, Watershed Development Plan, Entry Point Activities, Estimation Watershed Economics, Agroforestry, Grassland Management, Wasteland Management, Watershed Approach in Government Programmes, Developing Collaborative know how People's Participation, Evaluation of Watershed Management.

Course Outcomes:

Students will be able to

- Explain hydrologic cycle and hydro meteorological measurements with a know how about various methods of field measurements and estimation of precipitation.
- Recognize the process of abstraction and runoff which they apply to carry out the assessment of water balance and runoff potential.

CV Scheme and Syllabus 2020-21

- Gain knowledge about basic aquifer parameters and groundwater resources for different hydrogeological boundary conditions.
- Recognize the need of water harvesting and conservation.
- Develop the water shed management concepts in accordance with importance to society.

Text Books:

- Subramanya K: "Hydrology", Tata McGraw Hill Co., New Delhi, ISBN: 9781259029974.
- Jeya Rami Reddy P: "Hydrology", Laxmi Publications, New Delhi, ISBN: 9788170080992.
- Vir Singh: "Watershed Planning and Management", Raj Yash Publishing House, Bikaner, ISBN: 9788186882405.

Reference Books:

- Ven Te chow: "Handbook of applied hydrology", McGraw Hill Book company. ISBN: 978-0070107748.
- S. K. Garg: "Irrigation Engineering and Hydraulic structures", Khanna Publication, New Delhi, ISBN: 978-8174090478.
- P.N.Modi: "Irrigation, water Resources and water power Engineering", Standard book house, New Delhi, ISBN: 978-8189401290.

- <u>https://nptel.ac.in/courses/105/101/105101002/</u>
- <u>https://nptel.ac.in/courses/105/101/105101010/</u>

Natural Disaster Mitigation and Management

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type			
18CVT533	4-0-0	4	50:50	3 hours	PEC			
Course Objectives:								

The students will be able to:

- Understand about types of Natural Disasters and Disaster Management Cycle.
- Develop skills in various stages of preparedness, mitigation and Management of Natural Hazards.
- Obtain Complete Knowledge on the Water and Weather related Disaster Management.
- Demonstrate the knowledge of Various Organization and Stakeholders Working on Disaster Management.

Syllabus

Module – I

Natural Disasters – Overview: Introduction- Natural Disasters around the world-Natural Disaster Risk Assessment- Earth and its characteristics Human Dimensions of Global environment Change – Disaster mitigation, preparedness, response and recovery comprehensive emergency management Early warning systems and Disaster Preparedness– Rehabilitation, Vulnerable Populations - Logistics and Services, Food & Nutrition and Shelter -Role of UN Red cross and NGOs.

Module – II

Natural Hazards: Introduction and Review - Natural Disasters - Principles, Elements, and Systems-Geological-Geomorphological aspects, Earthquake- Geology, Seismology, Characteristics and dimensions – Landslides - Human impact on the mountainous terrain and its relationship with Rainfall, liquefaction etc.- Tsunami -Nature and characteristics.

10 Hrs

10 Hrs

10 Hrs

Module – III

Climate system aspects and Processes: Oceanic, Atmospheric and Hydrologic cycles - Severe Weather and Tornadoes, Cyclones, Floods and Droughts - Global Patterns - Mitigation and Preparation – Drought – Famine- nature and dimensions – Drought Assessment and Monitoring.

Module – IV

Natural Disaster Communication: Mapping - Modeling, risk analysis and loss estimation – Natural disaster risk analysis - prevention and mitigation - Applications of Space Technology (Satellite Communications, GPS, GIS and Remote Sensing and Information / Communication Technologies (ICT) in Early warning Systems - Disaster Monitoring and Support Centre– Information Dissemination, mobile communication Etc.

Module-V

Administrative mechanisms: Community and Social organizations – Education and Training – Establishment of capacity building among various stake holders – Government - Educational institutions – Use of Multi-media knowledge products for self-education.

10 Hrs

10 Hrs

Course Outcomes:

Students will be able to

- Understand types of natural disasters and its management.
- Develop organizational and Administrative strategies for managing Natural Hazards.

- Learn methodologies for disaster risk assessment w.r.t Water and Climate related disasters.
- Apply tools like GPS, GIS, Remote sensing, information technologies, etc. for managing the disasters.
- Specify key roles of capacity building to face disaster among government bodies, institutions, NGO's, etc.

Text Books:

- Kovach, Robert L.: "Earth's Fury: An Introduction to Natural Hazards and Disasters", Englewood Cliffs, N.J., Prentice Hall, 1995.
- B.Narayan: "Disaster Management", S.B.Nangia, A P H publishing corporation, Delhi-2014
- Siddhartha Gautam, K Leelakrishna Rao: "Natural disaster Management", 3rd
- Edition, 2012, ISBN: 9381604320.

Reference Books:

• Arul Jothi, D L Balaji: "Safety and Disaster Management Education In Schools", 1st Edition, Anmol Publications, 2009, ISBN: 9380252609.

- <u>https://www.ndma.gov.in/en/</u>
- <u>www.nrdms.gov.in/natural_disaster.asp</u>
- <u>https://www.ksndmc.org/Default.aspx</u>

Construction Management and Engineering Economics

Course Code	L-T-P (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type			
18CVT534	4-0-0	4	50:50	3 hours	PEC			
Course Objectives:								

The students will be able to:

- Understand the fundamentals of construction and project management.
- Learn the fundamentals of Resource management.
- Study the concepts of Construction Economics and Finance.
- Learn financial management and construction accounting.

Syllabus

Module-I

Introduction: Construction Team and functions of a construction manager. Project Organization, Types, structure and practices. Stages of construction project, Delays. Job layout, Construction schedules - Preparation, uses and types of construction schedule.

10 Hrs

10 Hrs

Module – II

Project management: Project Planning, Scheduling, Monitoring and Updating. Work Breakdown Structure, Introduction to CPM and its applications, Network fundamentals, Numerical on Fulkerson's rule. Introduction to PERT and its uses and importance, Numerical on Time estimates.

Module – III

Resources management: Equipment-Selection, planning and financing. Equipment management and maintenance, Owning and operation costs. Materials management-Importance, objectives and uses. Functions of materials management department and stores management.

Module – IV

Engineering economics: Basic principles, Time value of money, Nominal and Effective Interest, Discounted cash flow, Cash flow diagrams Equivalence – Single payment Compound amount factor, Uniform annual series payments – Derivations and problems.

10 Hrs

10 Hrs

Module – V

Financial management–Working capital management, Sources of finance, Long term and short term Finance Construction accounting – Basic concepts and principles, Income statement, Financial statements – Profit and Loss, balance sheets Taxation Inflation and Depreciation – methods of depreciation.

10 Hrs

Course Outcomes:

Students will be able to

- Recognise the nature of construction industry and the importance of management.
- Formulate project management principles to solve problems on construction network and time estimates.
- Manage the resources efficiently in construction.
- Apply the concepts of economics and finance in constructions.
- Manage finance and accounts in construction.

Text Books:

• Chitkara K K: "Construction Project Management", 10th Reprint, Tata McGraw Hill, 2006, ISBN-13: 978-9339205447.

- Srinath L.S: "PERT and CPM", 3rd Edition, East West Press Pvt. Ltd., New Delhi, 2001, ISBN-13: 978-8185336206.
- Courtland A. Collier and William B. Ledbetter, "Engineering Economics and Cost Analysis", Harper and Row, 2005, ISBN-13: 9780673983947.

Reference Books:

- Peurifoy. R L: "Construction Planning, Equipment and Methods", 6th Edition, (Chapters 1,2), McGraw Hill, 2001, ISBN 13: 9780072321760.
- Harris F and McCaffer R.: "Modern Construction Management", 7th Edition, (Chapters 4,6,7), BSP Professional Books, 2013, ISBN-13: 978-0470672174.

- nptel.ac.in/courses/105103023/
- http://www2.aku.edu.tr/~icaga/kitaplar/fundamentals-of-construction-management.pdf
- https://iimtstudies.files.wordpress.com/2014/03/finance_and_eco.pdf
- https://www.openstaxcollege.org/files/textbook_version/low_res_pdf/21/ principles-of-economics-LR.pdf

Design of Masonry Structures

			-				
Course Code	L-T-P-S	Credita	Even merly	Exam	Course		
Course Code	(Hrs/week)	Credits	Exam marks	Duration	Туре		
18CVT535	3-0-0-0	3	50:50	3 hours	PEC		
Course Objectives:							
The stud	lents will be able t	.0:					

• Understand the concept of masonry construction.

- Recognize the strength and stability aspects along with defects in masonry.
- Study the behaviour of masonry under compression.
- Compute flexural and shear bond strengths.
- Design the load bearing masonry building as per BIS codal provisions.

Syllabus

Module – I

Masonry Units, Materials, Types and Masonry Construction: Brick, stone and block masonry units – strength, modulus of elasticity and water absorption of masonry materials – classification and properties of mortars, selection of mortars. 10 Hrs

Module – II

Strength, Stability and Defects: Strength and stability of concentrically loaded masonry walls, effect of unit strength, mortar strength, joint thickness, rate of absorption, effect of curing, effect of ageing, workmanship, strength formulae and mechanism of failure for masonry subjected to direct compression. Defects and errors in masonry construction, cracks in masonry, types, reasons for cracking, methods of avoiding cracks. 10 Hrs

Module – III

Strength of Masonry in Compression: Behaviour of Masonry under compression, strength and Young's modulus, influence of mortar and masonry unit, effect of masonry unit height on compressive strength, influence of masonry bonding patterns on strength, prediction of strength of masonry in Indian context. Effects of slenderness and eccentricity on compressive strength.

Module-IV

Flexural and shear bond: Bond between mortar and masonry unit, tests for determining flexural and shear bond strengths, factors affecting bond strength, effect of bond strength on compressive strength, orthotropic strength properties of masonry in flexure, shear strength of masonry, test procedures for evaluating flexural and shear strength. 10 Hrs

Module – V

Permissible Stresses, Design Considerations and Load Considerations for Masonry: Permissible stress, stress reduction and shape reduction factors, increase in permissible stresses for eccentric vertical and lateral loads, permissible tensile and shear stresses. Effective height of walls and columns, opening in walls, effective length, effective thickness, slenderness ratio, eccentricity, load dispersion, arching action, lintels. Wall carrying axial load, eccentric load with different eccentricity ratios, walls with openings, freestanding wall.

Design of Load Bearing Masonry Buildings: Design of load bearing masonry for building up to 3 storeys using IS : 1905 and SP : 20 procedure.

10 Hrs

Course Outcomes:

Students will be able to

- Classify and describe the characteristics of brick, stone, clay block, concrete block.
- Comprehend the factors affecting the strength and stability of masonry.
- Describe the behavior of masonry under compression, strength and elastic properties.

10 Hrs

CV Scheme and Syllabus 2020-21

- Calculate masonry flexural, shear bond strength of and permissible compressive stress.
- Analyze and design the load bearing masonry building.

Text Books:

- Hendry A.W , "Structural masonry", Macmillan Education Ltd., 2nd edition, ISBN-13: 978-0333733097
- Sinha B.P & Davis S.R. "Design of Masonry structures", E. & F. N. Spon, 2004.
- Jagadish K. S, Venkatarama Reddy B. V and Nanjunda Rao K. S, "Alternative building materials & technologies", New age International, New Delhi & Bangalore, 2007.

Reference Books:

- Dayaratnam P, "Brick & Reinforced Brick structures", Oxford & IHB. ISBN-13: 978-8120402492, 2017.
- Sven Sahlin, "Structural Masonry", Prentice Hall, ISBN-13: 978-0138539375, 1971.
- IS 4326: Code of practice for earthquake resistant design and construction of buildings.
- IS 1905: Code Of Practice for Structural Use of Unreinforced Masonry.
- SP 20: Handbook on Masonry Design and Construction.

E-Resources:

• https://nptel.ac.in/courses/105/106/105106197/

CONSTRUCTION QUALITY MANAGEMENT SYSTEM (QA/QC)								
Course Code	L:T:P:S	Credits	Exam marks	Course Type				
18EET541	4-0-0-0	4	50:50	PEC				
Course Obiesti			·					

Course Objectives:

The students will be able to:

- Learn the importance of quality assurance and control
- Know the ISO standards for construction and QC/QA plan
- Provide the performance monitoring requirements for QC/QA
- Study the construction deficiencies, documentation, field changes and reporting
- Apply the above concepts for life project.

Syllabus Module – I

Introduction: Construction Quality, Definition of quality as given by Deming, Juran, Crosby, Inspection and Testing, Quality aspects in every phase in the life cycle of Construction project, Quality control, Quality Assurance, difference between Quality control, Quality Assurance (QA/QC). PDCA Cycle. **10 hrs**

Module – II

Quality Systems: Study of ISO 9000 - Quality System Standards, Purpose of ISO Standards - project setting construction QC/QA plan - contracts description - objectives of this construction quality assurance plan (CQAP) - organization

ProjectQC/QA organization - responsibilities and authorities of organizations- environmentalprotection agency - structure ofQC/QA organization - responsibilities and authorities of keypersonnel - contractor's quality control personnel - QC systems manager10 Hrs

Module – III

Performance monitoring requirements - quality of life performance standards - pollution prevention - reporting

Inspection and verification activities - general construction inspection and verification requirements - control, verification and acceptance testing plan – inspections - preparatory inspection - initial inspection - follow-up inspection - completion inspection - QC testing - QA testing - construction acceptance criteria - construction audits - compliance with handling, storage, packaging, - preservation, and delivery requirements - material identification and traceability.

10 Hrs

Module – IV

Construction deficiencies - deficiency identification - contractor qc deficiency identification and control - non-conformance report - contractor QC deficiency correction - preventive actions

Documentation - daily record keeping - daily construction report - inspection and testing report forms - record drawings - control of quality records

Environmental requirement approvals (environmental protection agency) - required submittals – CQAP - work completion report - EPA approval

Field changes - CQAP changes - QC changes

Final reporting: As-built drawings and specification – QA/QC report

10 Hrs

Module – V

Project Base Learning

Quality plan for a small residential building including documentation using templates.

10 Hrs

Course Outcomes:

On completion of this course, students will be able to:

- Gain the knowledge of different aspects of quality
- Implementation of ISO standards and QC/QA plan
- Perform monitoring requirements for QC/QA
- Identify construction deficiencies, documentation, field changes and reporting for site
- Evaluate the QA/QC plan for life project.

Text Books:

- 1 N. Logothetis, "Management for Total Quality", 8th Edition, Prentice Hall New Delhi, 2003.
- 2 D S Rajendra Prasad, "Quality Management System in Civil Engineering", Sapna Book House, Bangalore. 2000
- 3 James O Brien, P.E. (1989) "Construction Inspection Handbook: Quality Assurance/Quality Control" Springer US, SBN: 978-1-4757-1193-6 (Print) 978-1-4757-1191-2 (Online)

References:

- 1. Robert (QMP) "Bench Marking", "The search for industry Best Practices that led to superior performance" American Society of Quality 1995.
- Parsons (2007) "Construction Quality Control/Quality Assurance Plan Phase 1 Facility Site Work Construction Hudson River PCBs Superfund Site" GE Company – Parsons Project Office 381 Broadway, Bldg 40-2, Fort Edward, NY 12828
- 3. Break Joseph and Susan Joseph "Total Quality Management", Excel Books , New Delhi, 1995.
- 4. Juran Frank, J.M. and Gryna, F.M. "Quality Planning and Analysis", Tata McGraw Hill 2002.
- 5. Ishikawa, K. (2006). Introduction to quality control. Productivity Press, Chennai.
- 6. Mathur, P. (2003). Implementing ISO 9001:2000. Vikas Publishing House, New Delhi.
- 7. Mitra, A. (2001). Fundamentals of quality control and improvement. Pearson Education Asia, New Delhi.
- 8. Mohanty R., Lakhe R. (2002). Total quality management. Jaico Publication House, Mumbai.

Eresouces:

https://nptel.ac.in/courses/110/104/110104080/

	Structural Analysis-II								
Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type				
18CVT55	3-0-0-0	3	50:50	3 hours	FC				
Course Object	ives:								
EvaluateUnderstandAnalyzeDetermini	 The students will be able to: Evaluate the beams by influence line diagram and rolling loads. Understand the concepts of indeterminate structures by deflection method. Analyze the beams and frames by moment distribution method. Determine the unknown moments by kani's method. 								
		Sy	vllabus						
		Mo	dule – I						
mentioned abov Slope Deflection and Analysis of	e. n Method: Intro	duction, Sign co sis of Orthogon	nvention, Develop	pment of slope- o	ction for the cases leflection equations cluding sway with				
					10 Hrs				
factor, Develop including sway Kani's Method	ment of method with kinematic re	: Introduction, and Analysis of edundancy less the Mod Basic Concept, A	of beams and orthan/equal to three	hogonal rigid jo	factor, Carry over inted plane frames 10 Hrs Analysis of rigid				
5 1		5							
					10 Hrs				
		Moo	lule – IV						
	uss element and a	•	ion, Development e framed structura						
		Ma	dule – V		10 Hrs				
continuous bear		lexibility Methorses using system	d) : Introduction, approach, Analys						
Course Outcom Students will be									

- Illustrate the concepts of ILD and moving loads on determinate structures.
- Apply the knowledge of structural analysis in engineering problems.
- Identify the suitable method to solve complex problems.
- Analyze determinate and indeterminate structures by different methods.
- Formulate the matrix for structural elements.

Text Books:

CV Scheme and Syllabus 2020-21

- S S Bhavikatti: "Structural Analysis Vol. II", (Chapters 1, 3-6), Vikas Publishing House, 4th Edition, 2009, ISBN: 9789325968806, 9325968800.
- S Ramamrutham and R Narayan: "Theory of Structures", (Chapters 9-12,14), Dhanpat Rai Publishing Company Private Limited, New Delhi, 9th Edition, 2014, ISBN: 978-9384378103.

Reference Books:

- Reddy C. S: "Basic Structural Analysis", (Chapters 11-13,18), Tata McGraw Hill, New Delhi, 3rd Edition, 2010, ISBN: 9780070702769.
- G.S. Pandit and R. Gupta: "Theory of Structures" Vol. 2, (Chapters 1-5), Tata McGraw Hill Publication Company Ltd., 1st Edition, ISBN: 9780074634981, 0074634984

- <u>http://elearning.vtu.ac.in/elcmys/13/ENotes/ECEEM/GR.pdf</u>
- <u>http://elearning.vtu.ac.in/elcmys/e-con/Stru_Ana/ch5/html/0004.htm</u>
- http://elearning.vtu.ac.in/elcmys/P2/CV42/Chapter_05/html/0004.htm
- <u>http://elearning.vtu.ac.in/elcmys/StruAna.htm</u>

		Gener	al Aptitude		
Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18CVH57	3-0-0-0	1	50:50	3 hours	· ·
Course Object	ives:				
The stuc		Ferent types of N	umerical / Arithmetic aterpretation problem	•	
		S	yllabus		
		Μ	odule – I		
Numerical Abil Numbers, Probl	•	ICF and LCM o	of numbers, Decima	al Fractions, Aver	rage, Problems on
					10 Hı
		Me	odule – II		
Numerical Abi Time and Work	•	e, Profit and I	Loss, Ratio and Pr	oportion, Partner	rship, Chain Rule
					10 Hı
		Mo	odule – III		10 Hı
	lity-III: Pipes an e Interest, Compo	d Cistern, Tin	odule – III ne and Distance, 1	Problems on Tra	ins, Alligation of
	•	d Cistern, Tin und Interest.		Problems on Tra	nins, Alligation of
Mixture, Simple	e Interest, Compo	d Cistern, Tin und Interest. Mo Games of Skil	ne and Distance, 1		10 Hr
Mixture, Simple	e Interest, Compo	d Cistern, Tin und Interest. Mo Games of Skil ries.	ne and Distance, Dodule – IV		ains, Alligation of 10 Hr nd Combinations,
Mixture, Simple Numerical Abil Probability, Ode	e Interest, Compo ity-IV: Races and d man out and Ser	d Cistern, Tin und Interest. Mo Games of Skil ries. Mo	ne and Distance, D Doule – IV 1, Calender, Clocks	s, Permutations ar	nins, Alligation of 10 Hr nd Combinations,
Mixture, Simple Numerical Abil Probability, Ode	e Interest, Compo ity-IV: Races and d man out and Ser	d Cistern, Tin und Interest. Mo Games of Skil ries. Mo	ne and Distance, D odule – IV 1, Calender, Clocks odule – V	s, Permutations ar	nins, Alligation of 10 Hr 10 Combinations, 10 Hr
Mixture, Simple Numerical Abil Probability, Ode Data Interpretat	e Interest, Compo ity-IV: Races and d man out and Ser tion: Tabulation, H	d Cistern, Tin und Interest. Mo Games of Skil ries. Mo	ne and Distance, D odule – IV 1, Calender, Clocks odule – V	s, Permutations ar	nins, Alligation of 10 Hr 10 Combinations, 10 Hr
Mixture, Simple Numerical Abil Probability, Od Data Interpretat	e Interest, Compo ity-IV: Races and d man out and Ser tion: Tabulation, H	d Cistern, Tin und Interest. Mo Games of Skil ries. Mo	ne and Distance, D odule – IV 1, Calender, Clocks odule – V	s, Permutations ar	ains, Alligation of 10 Hr nd Combinations,
Mixture, Simple Numerical Abil Probability, Od Data Interpretat Course Outcor Students will be	e Interest, Compo ity-IV: Races and d man out and Ser tion: Tabulation, H nes: e able to	d Cistern, Tin und Interest. Mo Games of Skil ries. Mo Bar Graphs, Pie	ne and Distance, D odule – IV 1, Calender, Clocks odule – V	s, Permutations ar	nins, Alligation of 10 Hr nd Combinations, 10 Hr 10 Hr

R S Aggarwal, "Quantitative Aptitude for competitive examinations", (Chapters 1-3,6-8,10-18,20-22,26-28,30,31,35-39), S. Chand Publishing, New Delhi, 2014, ISBN-13: 978-81-219-2498-6.

Reference Books:

• GKP, "General Aptitude: Quantitative Aptitude & Reasoning" ISBN-13: 9788183559591 G.K. Publications Private Limited

E-Resources:

• https://nptel.ac.in/

Limit State Design of RC and Steel Structure							
Course Code L:T:S Credits Exam marks Exam Duration Course Type							
18CVI61	4:0:0:0	4	CIE:50 SEE:50	4 hours	FC		

Course Objectives:

This course will enable students to:

- Identify, formulate and solve engineering problems of RC elements subjected to different kinds of loading.
- Follow a procedural knowledge in designing various structural RC elements.
- Impart the culture of following the codes for strength, serviceability and durability as an ethics.
- Provide knowledge in analysis and design of RC elements for the success in competitive examinations.
- Analyse the behaviour of different connections used in steel structures.

Syllabus Module – I

Objective of structural design-Steps in RCC Structural Design Process- Type of Loads on Structures and Load combinations- Code of practices and Specifications – Concept of Working Stress Method, Ultimate Load Design and Limit State Design Methods for RCC – Stress strain behaviour of Concrete and Reinforcing Steel – Analysis and Design of Singly reinforced Rectangular beams by working stress method – Limit State philosophy as detailed in IS code – Advantages of Limit State Method over other methods – Analysis and design of singly and doubly reinforced rectangular beams by Limit State Method. **8 Hours**

Module – II

Design Of Slabs: Types of slabs - Analysis and design of one way simply supported and continuous slabs and supporting beams-Two-way slab.

Design of Columns: Effective length of column, Slenderness ratio for columns, Minimum eccentricity, Design of short axially loaded columns, Design of column subject to combined axial load and uni-axial and bi-axial moment using SP – 16 charts. **8 Hours**

Module-III

Design of Stair cases: General features; types of stair case, Design of Dog legged and Open well staircases.

Design of Footings: Introduction, Types of footings – selection - Design of isolated rectangular footing for axial load – Design of combined and raft footings.

8 Hours

Module – IV

Introduction: Advantages and Disadvantages of Steel structures, loads, load combination, Failure criteria for steel, Codes, Specifications and section classification.

Bolted Connections: Advantages and Limitations of bolted joints, Design strength of ordinary Black=Bolts and High Strength Friction Grip bolts (HSFG), Design of Simple Connections, Moment resistant Connections.

8 Hours

Module – V

Welded Connections: Introduction, Types and properties of welds, Effective areas of welds, Weld Defects, Simple welded joints for truss member, Advantages and Disadvantages of Bolted and Welded Connections. **8 Hours**

List of Experiments using Auto Cadd Software

S1.	Name of the Experiment
No.	
1	Drawing of Singly and Doubly reinforced beams.
2	Drawing of one way, one way continuous and two way Slabs.
3	Drawing of columns.
4	Drawing of dog legged and open Well stair case.
5	Drawing of footings.
6	Bolted and welded connections.

Course Outcomes:

- Understand the design philosophy and principles.
- Solve engineering problems of RC elements subjected to flexure, shear.
- Demonstrate the procedural knowledge in designs of RC structural elements such as slabs, columns and footings.
- Prepare Reinforcement drawings of structural elements.
- Apply the concept of Limit State Design of steel structures.
- Capable of design various steel components using bolted and welded connections.

TEXT BOOKS :

- 1. Pillai and Menon, Reinforced Concrete Design-, McGraw Hill Education, 3rd edition (2017)
- 2. N Krishnaraju, Design of Reinforced Concrete Structures: IS:456-2000, CBS Publishers & Distributors, 4th Edition (2016)
- **3.** S. S. Bhavikatti: "Design of RCC Structural Elements Vol-I", New Age International Publications, New Delhi, ISBN: 978-8122416930.
- **4.** N Subramanian: "Design of Steel structures", Oxford University Press, 11th Edition, 2013, ISBN:9780195676815.
- 5. K S Duggal: "Limit State Design of Steel Structures", Tata Mcgraw Hill, Edition, 2010, ISBN: 9781259083785.
- **6.** S. Ramamrutham: "Design of Steel structures", Dhanpat Rai Publishing Company, Edition, 2018, ISBN-10: 8187433361; ISBN-13: 978-8187433361.

Reference Books:

- 1. Neelam Sharma, "R.C.C.Design & Drawing", S.K. Kataria & Sons, Reprint edition (2013)
- 2. P.C. Varghese, "Limit State Design of Reinforced Concrete", PHI Learning Private Limited, 2nd Edition (2008)
- 3. V. L. Karve & Late S. R. Shaha, "Limit State Theory & Design of Reinforced Concrete (I.S456 2000)", Structures Publications (2014)
- 4. S.N.Shinha: "Reinforced concrete Design" TMH Education Private Limited, ISBN: 978-9351342472.
- 5. S.S Bhavikatti: "Design of Steel Structures", IK International Pvt. Ltd.,2009, ISBN: 9789380026619.
- 6. Dr. B C Punmia, Dr. A K Jain: "Comprehensive Design of Steel Structures", Firewall Media, 1998, ISBN: 9788170080930.

Geotechnical Engineering							
Course Code	L:T:S	Credits	Exam marks	Exam Duration	Course Type		
18CVT62	4:0:0:0	4	CIE:50 SEE:50	4 hours	FC		

Course Objectives:

This course will enable students to:

- Understand the basic concepts of soil mechanics to identify and classify the soil
- Know the role of water in soil and determine the rate of settlement through laboratory test
- Asses the shear strength of soil and improvement in mechanical behaviour by densification of soil
- Compute the distribution of stresses below footing and understand the forces acting on the retaining walls
- Conceptually learn various theories related to bearing capacity of soil

Syllabus Module – I

INTRODUCTION: Introduction, origin and formation of soil, Phase Diagram, Basic definitions and their inter relationships. Index properties of soils, Consistency of soils: Atterberg limits and indices. Liquid Limit by Casagrande's method, Plastic limit and shrinkage limit determination. **STRUCTURE & CLASSIFICATION OF SOILS**: Clay minerals, Soil structure and fabric. Purpose of soil classification, The Unified Soil Classification System, and IS classification system.

Module – II

PERMEABILITY and COMPRESSIBILITY OF SOIL: Introduction, Darcy's law, Coefficient of permeability and its determination in laboratory, Factors affecting permeability, Hydraulic Conductivity in Stratified Layers of Soil, Seepage Velocity and Superficial Velocity. Numerical Problems.

CONSOLIDATION: Definition, Mass-spring analogy, Normally, under and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation characteristics of soil (Cc, av, mv and Cv). **10 Hrs**

Module –III

SHEAR STRENGTH OF SOILS: Introduction, Concept of shear strength, Mohr-coulomb Failure Criteria, Total and effective shear strength parameters, Concept of pore pressure, Measurement of shear parameters - Direct shear test and Triaxial compression test, Drainage Conditions and Strength Parameters.

SOIL COMPACTION: Laboratory Tests: Standard and Modified proctor's compaction tests, factors affecting compaction, problems.

10 Hrs

10 Hrs

Module-IV

STRESSES IN SOILS: Boussinesq's and Westergard's theories assumptions and Equations for point loads, Pressure Isobars, Numerical problems.

LATERAL EARTH PRESSURE: Active and Passive earth pressures, Rankine's Earth pressure Theory, Coulomb's Earth Pressure Theory, Culman's and Rebhan's graphical methods.

10 Hrs

Module – V

BEARING CAPACITY OF SHALLOW FOUNDATIONS: Introduction, Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's bearing capacity equations-assumptions and limitations, IS Code's bearing capacity equations, Bearing capacity of footings subjected to eccentric loading. Effect of ground water table on bearing capacity. Standard penetration test - Bearing capacity based on corrected SPT value and Cone penetration test. Foundation settlement: Calculation of settlement - immediate, consolidation and secondary

settlements. Numerical problems.

Course Outcomes:

Students will be able to

- Identify and Classify the soil
- Understand the role of water in soil and capable of estimating consolidation characteristics of soil.
- Determine the shear strength parameters of soil through laboratory test
- Compute the lateral pressure distribution behind retaining walls and stress distribution below footing
- Estimate the load bearing capacity under footings and cause of settlement due to applied loads.

TEXT BOOKS :

- Punmia B.C. (2005), "Soil Mechanics and Foundation Engg.", 16th Edition Laxmi

 Publications Co., New Delhi.
- Gopal Ranjan and Rao A.S.R. (2000), "Basic and Applied Soil Mechanics", New Age International (P) Ltd., New Delhi.
- Venkatramiah C., Geotechnical Engineering, New Age International (P) Ltd , Publishers, New Delhi, 2006.

Reference Books:

- Ramamurthy T.N. & Sitharam T.G.(2010), "Geotechnical Engineering", S.Chand & Company, New Delhi.
- Murthy V.N.S. (1996), "Soil Mechanics and Foundation Engineering", 4th Edition, UBS Publishers and Distributors Ltd, New Delhi.
- Braja M. Das (2002), Principles of Geotechnical Engineering, 5th Edition, Thomson Business Information India (P) Ltd., India.

- http://nptel.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/soil_mech/index.htm
- http://www.eng.fsu.edu/~tawfiq/soilmech/lecture.html
- http://aboutcivil.org/soil-mechanics/soil-mechanics-1-high.pdf

	INDUSTRIAL WASTEWATER TREATMENT							
Course Code	L:T:S	Credits	Exam marks	Exam Duration	Course Type			
18CVT 642	3:0:0:0	3	CIE:50 SEE:50	4 hours	FE			

Course Objectives:

This course will enable students to:

• Identify, formulate, and solve various types of industrial pollution.

• Function on multi-disciplinary teams in the areas of different types of industries to reduce, recycle and reuse the waste from industries.

• Apply knowledge of mathematics, science, and engineering in industrial wastewater treatment, like planning, analysis and designing of treatment units including details of statuary rules and regulations.

• Design a system, components, or processes to meet desired needs in industrial wastewater treatment.

Syllabus

• Identify, various types of industrial wastes and suitable treatment techniques.

Module – I
Industrial Scenario in India - Industrial activity and Environment - Uses of Water by industry -
Difference between domestic and industrial wastewater- Parameters of pollution and their effects
receiving streams- Classification of streams based on the mixing of effluents-Self-purification of
streams - Oxygen sag curve- Derivation of streeter – phelps equation – Numerical problems.

8 Hours

Module – II

Environmental Standards for Industrial Effluents - Effluent sampling – grab and composite sampling, Treatment methods of industrial effluent – pre-treatment of waste - Equalization – Neutralization-Flotation-Volume reduction and strength reduction.

8 Hours

Module – III

Introduction to Secondary Treatment of Industrial Effluents – Design of an aeration unit – design of a trickling filter – design of an oxidation pond - Introduction and feasibility of combined treatment municipal waste and industrial waste -volume ratio-Rental charges and economics.

8 Hours

Module-IV

Manufacturing process flow sheet with source of wastewater, Characteristics of waste, effects of untreated waste on streams or on land and the treatment of the following industrial effluents Cotton textile Industry, Dairy industry and sugar mill.

8 Hours

Module-V

Manufacturing process flow sheet with source of wastewater, Characteristics of waste, effects of untreated waste on streams or on land and the treatment of the following industrial effluents Paper and pulp Industry, Distillery industry, Food Processing industry. Processing industry.

8 Hours

Course Outcomes:

- Characterize the different types of industrial effluents.
- Advise the regulating authority about the possible danger from specific industries.
- Develop planning skill in designing water pollution control systems in industries.
- Differentiate red category industries from green category industries.

TEXT BOOKS :

- Nelson L Nemerow: "Liquid Waste of industry, Theories, Practices and Treatment", Addison-Wesley, 1st Edition, 1971, ISBN-13: 978-0201052640.
- Rao M N, Dutta A.K: "Waste water treatment", 3rd Edition, Oxford and IBH Publications Pvt. Ltd., New Delhi, 2008, ISBN: 9788120417120, 8120417127.

Reference Books:

• Nelson L Nemerow: "Liquid Waste of industry, Theories, Practices and Treatment", Addison-Wesley, 1st Edition, 1971, ISBN-13: 978-0201052640.

• Rao M N, Dutta A.K: "Waste water treatment", 3rd Edition, Oxford and IBH Publications Pvt. Ltd., New Delhi, 2008, ISBN: 9788120417120, 8120417127.

• Mahajan S P.: "Pollution control in Process Industries", Tata McGraw Hill Company, New Delhi, 1985, ISBN: 9780074517727, 0074517724.

• Eckenfelder: "Industrial Water pollution Control", McGraw Hill Company, New Delhi American Chemical Society, Washington D.C., USA, 2000, ISBN: 9789339220433.

E-Resources:

- www.neerienvis.nic.in/pdf/
- www.fao.org/

www.gewater.com/applications, www.waterleau.com/en

	PAVEMEN	T MATERIAL	S AND CONSTI	RUCTION	
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type
18CVT641	3:0:0:0	3	CIE:50 SEE:50	3 hours	FE
Course Objectiv	es:	I			
• To learn t	he types, source,	, functions and p	roperties of soil a	and its stabilizati	ion methods.
	• •	-	irements, propert		
	adation for road	· .			22 2
0			ons of different ty	pes of bitumino	us materials for
	ious components	-		1	
			uired for cons	truction depend	ding upon the
requireme		1 1	1	1	0 1
1		and quality cont	rol plans in an att	tempt to constru	ct better
	g pavements	1 2	1	1	
	01	Sylla	bus		
		Modu	le – I		
SOIL: Types,	source, function	ns, properties. l	Preparation of s	ubgrade, quality	y control tests.
Construction of e	embankments for	r roads, compact	tion studies in lab	poratory and field	ld, properties of
compacted soils.					
SOIL STABIL	ZATION – prin	nciple, methods	and tests, propor	tioning of mater	rials. Stabilizers
and waste materia	als in road const	ruction, their pro	perties and scope	e in road constru	ction.
		-			08 Hours
		Modu	le – II		
AGGREGATES	S: Origin, classi	fication, require	ments, properties	s and tests on r	oad aggregates,
concepts of size					
Rotchfutch metho		00	0 1		0 0
					08 Hours
		Modul	e – III		
BITUMEN ANI	D TAR: Origin.			nical constitution	n of bituminous
road binders; req	-	propulation, pro	percies and ener		
BITUMINOUS		AND CUTBAC	KS: Preparation	characteristics	uses and tests
Adhesion of Bitu			-		
tests and methods			sates. Trancsion I	andre, meenam	08 Hours
tests and method.	s of improving a	Modul	o _ IV		00 110015
EQUIPMENT I	NHICHWAY			es of equipment	for excavation
grading and com			• •		
	-		, auvainages and	i minitations. Sp	08 Hours
for bituminous ar		ete pavements			00 110015
		Modu	le – V		
CONSTRUCTIO	ON OF FLE	XIBLE AND	CEMENT C	CONCRETE I	PAVEMENTS:
Specifications of	materials, cons	truction method	s and field contra	rol checks for v	various types of
flexible and right	id pavements la	ayers. (PQC In	portance of pro	oviding DLC as	s sub-base and
polythene thin la	yer between PQ	C and sub-base); Quality contro	l tests; Constru	ction of various
types of joints.			-		
					08 Hours

08 Hours

Course Outcomes:

- Characterize the response characteristics of soil, aggregate, asphalt, and asphalt mixes
- Analyze flexible pavements and rigid pavements.
- Identify the need of various equipment required for construction of highways.
- Construction of flexible pavement and rigid pavement.
- Prepare quality assurance and quality control plans in an attempt to construct better performing pavements

Text Books:

- Highway Engineering- Khanna, S.K., and Justo, C.E.G.(Chapters,6,7,8,9): Nem Chand and Bros. Roorkee ISBN:9788185240800.
- Construction Equipment and its Management- S.C. Sharma, (Chapters 1,2,3,4,6,7) SBN:9788174092281 8174092285 xvi+893 Yr. of Pub.2013 Paper Back English Khanna Publishers, Delhi.
- Hot Mix Asphalt Materials, Mixture Design and Construction- (Chapters 1and 2) Freddy L. Roberts, Kandhal, P.S. : University of Texas Austin, Texas. NAPA Education Foundation Lanham, Maryland. ISBN 10: 0914313010 ISBN 13: 9780914313014

Reference Books:

- Freddy L Roberts, Prithvi S Kandhal et al, "Hot Mix Asphalt Materials, mixture design and construction"- (2ndEdition), National Asphalt Pavement Association Research and Education Foundation, Maryland, USA. ISBN-10: 0914313010; ISBN-13: 978-0914313014
- RRL, DSIR, 'Bituminous Materials in Road Construction', HMSO Publication. ISBN 9781138893764 -
- RRL, DSIR, 'Soil Mechanics for Road Engineers', HMSO Publication. ISBN: 0115502785 9780115502781
- Relevant IRC codes and MoRT & H specifications

- http://www.fhwa.dot.gov/pavement/pavemat.cfm
- http://library.iitbbs.ac.in/book-info.php?id=53c3bce66e43be4f209556518c2fcb54
- http://www.pppcatalog.com/store/pavement-maintenance-and-construction/
- http://cce.oregonstate.edu/ptm
- http://www.fhwa.dot.gov/pavement/asphalt/

	INDUSI	KIAL WAST	EWATER TREAT	MENT	
Course Code	L:T:S	Credits	Exam marks	Exam Duration	Course Type
18CVT 642	3:0:0:0	3	CIE:50 SEE:50	4 hours	FE

Course Objectives:

This course will enable students to:

• Identify, formulate, and solve various types of industrial pollution.

• Function on multi-disciplinary teams in the areas of different types of industries to reduce, recycle and reuse the waste from industries.

• Apply knowledge of mathematics, science, and engineering in industrial wastewater treatment, like planning, analysis and designing of treatment units including details of statuary rules and regulations.

• Design a system, components, or processes to meet desired needs in industrial wastewater treatment.

• Identify, various types of industrial wastes and suitable treatment techniques.

Module – I
Industrial Scenario in India - Industrial activity and Environment - Uses of Water by industry -
Difference between domestic and industrial wastewater- Parameters of pollution and their effects
receiving streams- Classification of streams based on the mixing of effluents-Self-purification of
streams - Oxygen sag curve- Derivation of streeter – phelps equation – Numerical problems.

Svllabus

8 Hours

Module – II

Environmental Standards for Industrial Effluents - Effluent sampling – grab and composite sampling, Treatment methods of industrial effluent – pre-treatment of waste - Equalization – Neutralization-Flotation-Volume reduction and strength reduction.

8 Hours

Module – III

Introduction to Secondary Treatment of Industrial Effluents – Design of an aeration unit – design of a trickling filter – design of an oxidation pond - Introduction and feasibility of combined treatment municipal waste and industrial waste -volume ratio-Rental charges and economics.

8 Hours

Module-IV

Manufacturing process flow sheet with source of wastewater, Characteristics of waste, effects of untreated waste on streams or on land and the treatment of the following industrial effluents Cotton textile Industry, Dairy industry and sugar mill.

8 Hours

Module - VManufacturing process flow sheet with source of wastewater, Characteristics of waste, effects of untreated waste on streams or on land and the treatment of the following industrial effluents Paper and pulp Industry, Distillery industry, Food Processing industry. Processing industry.

8 Hours

Course Outcomes:

- Characterize the different types of industrial effluents.
- Advise the regulating authority about the possible danger from specific industries.
- Develop planning skill in designing water pollution control systems in industries.
- Differentiate red category industries from green category industries.
- •

TEXT BOOKS :

- Nelson L Nemerow: "Liquid Waste of industry, Theories, Practices and Treatment", Addison-Wesley, 1st Edition, 1971, ISBN-13: 978-0201052640.
- Rao M N, Dutta A.K: "Waste water treatment", 3rd Edition, Oxford and IBH Publications Pvt. Ltd., New Delhi, 2008, ISBN: 9788120417120, 8120417127.

Reference Books:

• Nelson L Nemerow: "Liquid Waste of industry, Theories, Practices and Treatment", Addison-Wesley, 1st Edition, 1971, ISBN-13: 978-0201052640.

• Rao M N, Dutta A.K: "Waste water treatment", 3rd Edition, Oxford and IBH Publications Pvt. Ltd., New Delhi, 2008, ISBN: 9788120417120, 8120417127.

• Mahajan S P.: "Pollution control in Process Industries", Tata McGraw Hill Company, New Delhi, 1985, ISBN: 9780074517727, 0074517724.

• Eckenfelder: "Industrial Water pollution Control", McGraw Hill Company, New Delhi American Chemical Society, Washington D.C., USA, 2000, ISBN: 9789339220433.

E-Resources:

- www.neerienvis.nic.in/pdf/
- www.fao.org/

www.gewater.com/applications, www.waterleau.com/en

REPAIR AND REHABILITATION OF STRUCTURES						
Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type	
18CVT643	3-0-0-0	3	CIE:50 SEE:50	3 Hours	FC	

Course Objectives:

The objective of this course is to make students

- To investigate the cause of deterioration of concrete structures.
- To strategize different repair and rehabilitation of structures.
- To analyze the behavior of deteriorated structure.
- To evaluate the performance of the materials for repair.

Syllabus	
Module – I	

General: Introduction, Cause of deterioration of concrete structures, Diagnostic methods & analysis, preliminary investigations, experimental investigations using NDT, load testing, corrosion mapping, core drilling and other instrumental methods, Quality assurance for concrete construction, as built concrete properties strength, permeability, thermal properties and cracking.

08 Hours

Module – II

Influence on Serviceability and Durability: Effects due to climate, temperature, chemicals, wear and erosion, Design and construction errors, corrosion mechanism, Effects of cover thickness and cracking, methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings, and cathodic protection.

08 Hours

Module – III

Maintenance and Repair Strategies: Definitions: Maintenance, repair and rehabilitation, Facets Maintenance, importance of Maintenance, Preventive measures on various aspects. Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration, testing techniques

08 Hours

Module – IV

Materials for Repair: Special concretes and mortars ,concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fiber reinforced concrete. Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and underpinning. **08 Hours**

Module – V

Examples of Repair to Structures: Repairs to overcome low member strength, Deflection, Cracking, Chemical disruption, weathering wear, fire, leakage, marine exposure, engineered demolition techniques for dilapidated structures - case studies **08 Hours**

Course Outcomes:

Students will be able to

- Achieve Knowledge of design and development of problem solving skills.
- Understand the cause of deterioration of concrete structures.
- Design and develop analytical skills.
- Summarize the principles of repair and rehabilitation of structures
- Understands the concept of Serviceability and Durability.

Reference Books:

- Sidney, M. Johnson "Deterioration, Maintenance and Repair of Structures".
- Denison Campbell, Allen & Harold Roper, "Concrete Structures Materials, Maintenance and Repair"- Longman Scientific and Technical
- R.T.Allen and S.C. Edwards, "Repair of Concrete Structures"- Blakie and Sons
- Raiker R.N., "Learning for failure from Deficiencies in Design, Construction and Service"- R&D Center (SDCPL)

- http://linlspringer.com
- http://crcnetbase.com

		REMOTE SE	NSING AND GIS		
Course Code	L:T:S	Credits	Exam marks	Exam Duration	Course Type
18EET651	3:0:0:0	3	CIE:50 SEE:50	3 hours	EET

Course Objectives:

This course will enable students to:

- Know about the principles of remote sensing and spectral signatures.
- Know about satellites, types of remote sensing and digital image processing
- Remote sensing and GIS advantages in mapping.
- Application in the field of Civilengineering.

Syllabus Module – I

Principles of Remote Sensing: Introduction to remote sensing, Remote sensing system. Electromagnetic spectrum, Black body Atmospheric windows, Spectral characteristics of earth's surface, Range of sensing system. Active remote sensing. Passive Microwave Remote Sensing: Basics-physics of RADAR waves, spectral characteristics of RADAR waves, microwave radiometers, passive microwave scanners and sensors. **8 Hours**

Module – II

Platforms, Sensors and Data Products: Ground aircraft, space aircraft platforms- photographic sensors, scanners, radiometers, and Mission planning. Data types and format, Scale and Legend. Introduction, platforms- Indian satellite IRS and Land sat specifications, Sensors-active and passive, MSS, AVHRR, LISS, TM, PAN, WIFS, microwave sensors, sensor resolutions (spatial, spectral, radiometric and temporal) Basic elements in Image interpretation.

8 Hours

Module – III

Geographic Information System: Introduction, history of GIS, comparisons with CAD, Necessity of GIS, components of GIS, GIS Architecture-data input, data manipulation, data output, Operation-processes and capabilities, different types of GIS, GIS data- spatial and non spatial, data models with advantages and disadvantages. Drone survey and its application.

8 Hours

Module-IV

Hyper-spectral Remote Sensing: Hyper-spectral Imaging: Hyper spectral concepts, data collection systems, calibration techniques, data processing techniques; preprocessing, N dimensional scatter-plots, Special angle mapping, Spectral mixture analysis, Spectral Matching, Classification techniques, airborne and space-borne hyper- spectral sensors, applications. High-resolution hyper-spectral satellite systems: Sensors, orbit characteristics, description of satellite systems, data processing aspects, applications. GNSS, IRNSS, GPS and its application.

8 Hours

Module – V

Civil Engineering Applications of RS and GIS, water resource management using GIS and RS, Ground water studies using GIS and RS, Urban Development Planning using RS and GIS, Flood monitoring, Draught monitoring, Transportation engineering, RS and GIS site selection for Dams, Bridges, Reservoirs.

Course Outcomes:

- Demonstrate the concepts of Electro Magnetic energy, spectrum and spectral signature curves.
- Apply the concepts of satellite and sensor parameters and characteristics of different

8 Hours

platforms.

- Prepare spatial Maps in GIS and able to Interpret GIS Maps.
- Explain the Hyper spectral remote sensing systems.
- Apply RS and GIS techniques to solve complex Civil engineering Problems.

TEXT BOOKS :

- Lilles and T.M and R.W. Kiefer: "Remote sensing and image interpretation", (Chapters 1-8), 4th Edition, John Wiley and Sons, 2000, ISBN: 9780470052457.
- Jensen J.R: "Introductory digital image processing, a remote sensing perspec- tive", (Chapters 1-4), 2nd Edition Prentice Hall, 1996, ISBN: 9780132058407.
- Richards J.A., and X. Jia: "Remote sensing digital image analysis: an introduction", (Chapters 1-3), 3rd Edition, Springer, 2006, ISBN: 9783540297116.
- Mikhail E., J. Bethel, and J.C. McGlone: "Introduction to modern photogramme- try", (Chapters 5-9), Wiley, 2001, ISBN: 9780471309246.

Reference Books:

- Ravi P Gupta: "Remote sensing Geology", (Chapters 1-8), Springer Verilag, New York, ISBN: 9783662052839
- Mather P.M.: "Computer processing of remotely-sensed images, an introduction", ISBN: 9781119956419.

- http://www.set.ait.ac.th/page.php?fol=rsgisandpage=rsgis
- http://geology.wlu.edu/harbor/geol260/lecture_notes.html
- http://www.rejinpaul.com/2014/10/vtu-civil-notes-vtu-civil-enigneering-1st- 2nd-3rd-4th-5th-6th-7th-8th-semester-lecture-notes-download-load.html
- <u>http://www.rejinpaul.com/2013/12/civil-2nd-4th-6th-8th-semester-notes-an- na-university-civil-notes.html</u>

		EXTENSIVE	SURVEY CAMP		
Course Code	L:T:S	Credits	Exam marks	Exam Duration	Course Type
18CVL67	1:0:2:0	2	CIE:50 SEE:50	3 hours	FC

Course Objectives:

This course will enable students to:

- Understand the practical applications of Surveying.
- Use of Total station in different projects.
- Develop communication skills, team work and use modern tool usage in the field of civil engineering.

Syllabus

An extensive survey training involving investigation and design of the following projects is to be conducted for 10 days.

The student shall submit a project report consisting of designs and drawings.

General instructions: Reconnaissance of the sites and fly leveling to establish bench marks.

- 1. New Tank Projects: The work shall consist of
 - a. Alignment of center line of the proposed bund, Longitudinal and cross sections of the center line.
 - b. Capacity surveys.
 - c. Details at Waste weir and sluice points.
 - d. Canal alignment.
- 2. Restoration of an Existing Tank: The work shall consist of:
 - a. Alignment of centre line of the existing bund, Longitudinal and Cross sections along the centre line.
 - b. Capacity surveys, Details at sluice and waste weir.
- 3. Water Supply and Sanitary Project: Examination of sources of water supply, Calculation of quantity of water required based on existing and projected population. Preparation of village map by any suitable method of surveying (like plane tabling), location of sites for ground level and overhead tanks underground drainage system surveys for laying the sewers.
- 4. **Highway Project:** Preliminary and detailed investigations to align a new road (min. 1 to 1.5 km stretch) between two obligatory points. The investigations shall consist of topographic surveying of strip of land for considering alternate routes and for final alignment. Report should justify the selected alignment with details of all geometric designs for traffic and design speed assumed. Drawing shall include key plan initial alignment, final alignment, longitudinal section along final alignment, typical cross sections of road. (Drawing should be preferably done using AutoCAD).

Course Outcomes:

On completion of this course, students will be able to:

- Understand of the principles and operation of the Global Positioning System for locating salient features by Total Station.
- Able to measure differences in elevation, draw and utilize contour plots, and calculate volumes for earthwork for civil engineering projects.

- Appreciate the need for licensed surveyors to establish positioning information for property and structures.
- Prepare layout plans as per the specifications of the local bodies.
- Develop communication skills and team work in any project.

TEXT BOOKS :

- Dr. B C Punmia: "Surveying Volume I", (Chapters 1-4, 6, 7, 9-13, 16, 18, 22), Lakshmi Publications Pvt. Ltd., 6th Edition, 2005, ISBN: 978-81-700-8853-0.
- Dr. B C Punmia: "Surveying Volume II", (Chapters 1-4, 6, 7, and 15), Lakshmi Publications Pvt Ltd, 6th Edition, 2005, ISBN: 978-81-700-8853-0.

Reference Books:

• Chandra, A.M.: "Higher Surveying", New Age International Publishers, 2002, ISBN: 9788122438123.

• Punmia P.C.: "Surveying", Volume 3, 15th Edition, Laxmi publications, 2004, ISBN: 81-7008-825-9.

• Lab manual provided by Dept. of Civil Engg., NCET.

- http://lib.uniten.edu.my/libsite/index.php?option=com_joomd&view=item&lay out=detail&typeid=2&id=202&Itemid=790
- http://ascelibrary.org/journal/jsued2
- www.survivorlibrary.com/engineers_surveying_instruments_1892.pdf
- www.asicivilsurvey.com/
- https://www.slideshare.net/suryaom/advance-surveying-equipments.

		Estimatio	n and Valuation		
Course Code	L-T-P-S	Credits	Exam marks	Exam	Course
1003/1771	(Hrs/week)	3	50.50	Duration 2 h array	Туре
18CVT71 Course Objecti	3-2-0-0	3	50:50	3 hours	PCC
The students wi					
 Gain th Estimat Civil En Identify Analyse of rates Underst Introduction: U Load bearing a Plastering, whit	e knowledge of e the quantities of ngineering Projec the specification the rates of diff tand, Apply and of Unit of measurem and framed strue e washing, color	f work and dev et. as of different it erent building c <u>Create the Tend</u> <u>S</u> <u>M</u> ents, Method o ctures – Calc ur washing and	ifferent types of bu relop the bill of qua tems of works components of work ler and Contract do Syllabus odule – I f taking quantities ulation of quantit painting / varnish ypes of arches – Ca	ntities and arrive as according to st cument. - Study of various ies of brick wo ing for shops, ro	andard schedule s drawings. ork, RCC, PCC, oms, residential,
handrails etc. Estimation of se - sewer line –	eptic tank, soak p tube well – op	Mo it – sanitary an ben well – esti	panelled and glas odule – II id water supply ins imate of bitumino	tallations – water us and cement c	10 Hrs supply pipe line concrete roads –
estimation of ref	taining walls – cu	ilverts – estima	tion of irrigation w	orks, estimation of	
					10 Hr
Data – Schedul specifications –		DERS alysis of rates racts – Types of of Quantity).	odule – III – Specifications – of contracts –M-Bo		U U
		Mo	odule – IV		
building – Cale	-	lard rent – M	italized value – Do ortgage – Lease A	-	
					10 Hrs
		Μ	odule – V		
	reach of contract.	of contract- es	ssentials of contrac	et agreement- leg	al aspects, penal

sanction. Bid submission and Evaluation to tender, Frequantication, administrative approval & Technical sanction. Bid submission and Evaluation process. Contract Formulation: Letter of intent, Award of contract, letter of acceptance and notice to proceed. Features / elements of standard Tender document (source: PWD / CPWD / International Competitive Bidding – NHAI / NHEPC / NPC). Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture.

Course Outcomes: Students will be able to

10 Hrs

- Taking out quantities and work out the cost and preparation of abstract for the estimated cost for various civil engineering works.
- Estimate the cost of different sanitary works.
- Prepare the specifications as per standard schedule of rates.
- Analyze the rates for various items of work.
- Assess contract and tender documents for various construction works.

Text Books:

- B. N. Dutta: "Estimating and costing", UBS publishers Distributors Ltd., India, 27th Edition, ISBN-13: 978-8174767295.
- P.L. Basin: "Quantity Surveying", 3rd Revised Edition, S. Chand and company, New Delhi, ISBN-10: 8121900859.
- S.C. Rangwala: "Estimating and Specification", 16th Edition, Charotar publishing house, 2014, ISBN: 978-93-80358-97-0.

Reference Books:

- G.S. Birde: "Text book of Estimating and Costing", 6th Edition, Dhanpath Rai and sons, New Delhi, ISBN: 9789384378134.
- D.D. Kohli, R.C. Kohli: "A text book on Estimating, Costing and Accounts", 2nd Edition, S. Chand, New Delhi, ISBN-10: 8121903327.
- Rangwala, C. "Estimating, Costing and Valuation", Charotar Publishing House Pvt. Ltd., 2015.

- https://www.schandpublishing.com/books/...textbook-estimating-costing.
- nfra.eresourceerp.com/estimation.html
- nfra.eresourceerp.com/Project-estimation.html
- https://www.mynewsdesk.com/in/view/pressrelease/job-costing-estimation.

Hydrology and Irrigation Engineering

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18CVT721	3-2-0-0	3	50:50	3 hours	PCC

Course Objectives:

This course will enable students to;

- Understand the concept of hydrology and components of hydrologic cycle such as pricipitation, infiltration, evaporation and transpiration.
- Quantify runoff and use concept of unit hydrograph.
- Demonstrate different methods of irrigation, methods of application of water and irrigation procedure.
- Design canals and canal network based on the water requirement of various crops.
- Determine the reservoir capacity.

Syllabus Module 1

Hydrology:

Introduction, Importance of hydrology, Global and Indian water availability, Practical application of hydrology, Hydrologic cycle (Horton's) qualitative and engineering representation.

Precipitation:

Definition, Forms and types of precipitation, measurement of rain fall using Symon's and Syphon type of rain gauges, optimum number of rain gauge stations, consistency of rainfall data (double mass curve method), computation of mean rainfall, estimation of missing data, presentation of precipitation data, moving average curve, mass curve, rainfall hyetographs **10Hrs**

Module – II

Losses: Evaporation:

Introduction, Process, factors affecting evaporation, measurement using IS class-A Pan, estimation using empirical formulae (Meyer's and Rohwer's equations) Reservoir evaporation and control

Evapo-transpiration:

Introduction, Consumptive use, AET, PET, Factors affecting, Measurement, Estimation by Blaney-Criddle equation,

Infiltration:

Introduction, factors affecting infiltration capacity, measurement by double ring infiltrometer, Horton's infiltration equation, infiltration indices. **10Hrs**

Module – III

Runoff:

Definition, concept of catchment, factors affecting runoff, rainfall – runoff relationship using regression analysis.

Hydrographs:

Definition, components of hydrograph, base flow separation, unit hydrograph, assumption, application and limitations, derivation from simple storm hydrographs, S curve and its computations, Conversion of UH of different durations **10Hrs**

Module – IV

Irrigation:

Definition. Benefits and ill effects of irrigation. System of irrigation: surface and ground water, flow irrigation, lift irrigation, Bandhara irrigation.

Water Requirements of Crops:

Duty, delta and base period, relationship between them, factors affecting duty of water crops and crop seasons in India, irrigation efficiency, frequency of irrigation design criteria. Rational method design. Hydraulic analysis of design, storm sewer appurtenances. Storm detention: effects of urbanization,

types of surface detention, subsurface disposal of storm water.

10Hrs

Module – V

Canals:

Types of canals. Alignment of canals. Definition of gross command area, cultural command area, intensity of irrigation, time factor, crop factor. Unlined and lined canals. Standard sections. Design of canals by Lacey's and Kennedy's method.

Reservoirs:

Definition, investigation for reservoir site, storage zones determination of storage capacity using mass curves, economical height of dam. **10Hrs**

Course Outcomes:

After studying this course, students will be able to:

- Understand the importance of hydrology and its components.
- Measure precipitation and analyze the data and analyze the losses in precipitation.
- Estimate runoff and develop unit hydrographs.
- Find the benefits and ill-effects of irrigation.
- Find the quantity of irrigation water and frequency of irrigation for various crops.
- Find the canal capacity, design the canal and compute the reservoir capacity.

Text Books:

- K. Subramanya, "Engineering Hydrology", Tata McGraw Hill Publishers, New Delhi.
- Jayarami Reddy, "A Text Book of Hydrology", Lakshmi Publications, New Delhi.
- Punmia and LalPandey, "Irrigation and Water Power Engineering" Lakshmi Publications, New Delhi.

Reference Books:

- H.M. Raghunath, "Hydrology", Wiley Eastern Publication, New Delhi.
- Sharma R.K., "Irrigation Engineering and Hydraulics", Oxford & IBH Publishing Co., New Delhi.
- VenTe Chow, "Applied Hydrology", Tata McGraw Hill Publishers, New Delhi.
- Modi P.N "Water Resources and Water Power Engineering". Standard book house, Delhi.
- Garg S.K, "Irrigation Engineering and Hydraulic Structures" Khanna publications, New Delhi.

- <u>https://guides.lib.vt.edu/subject-guides/cee/environmental-water-engineering</u>
- <u>https://ascelibrary.org/doi/book/10.1061/9780784406748</u>

Traffic Engineering

Course Code	L:T:P:S	Credits	Exam marks	Exam Duration	Course Type
18CVT722	3:0:0:0	3	CIE:50 SEE:50	3 Hours	FE
Course Objective	•				

Course Objectives:

Students will be able to study the

- Scope of traffic engineering and traffic characteristics.
- Various traffic engineering studies.
- Interpretation of the traffic study and traffic flow theory.
- Intersection design and Rotary intersection.
- Traffic regulation and control and ITS.

Syllabus

Module-I

Introduction to Traffic Engineering: Definition, objectives of Traffic Engineering and scope of Traffic Engineering.

Traffic Characteristics: Road user characteristics, vehicular characteristics – static and dynamic characteristics, power performance of vehicles, Resistance to the motion of vehicles – Reaction time of driver – Problems on above. **08Hours**

Module-II

Traffic Studies and Interpretation – Types, Objectives, Data collection, analysis and interpretation of results of classified traffic studies. Spot speed, speed and delay, origin and destination, Parking studies, Accident- causes, analysis of individual accidents, measures to reduce accident. Problems on above. **08Hours**

Module – III

Traffic Flow Characteristics: Traffic flow variables, speed – flow – density relationship, PCU values, correlation and regression analysis (linear only) – Queuing theory, Poisson's distribution and Normal Distribution application to traffic engineering and relevant problems on above. Traffic Forecast and Simulation technique. **08Hours**

Module – IV

Intersection Design: Principle At grade and Grade separated junctions – Types – channelization – Features of channelizing Island – median opening – Gap in median at junction.

Rotary Intersection: Elements – Advantages – Disadvantages – Design guide lines – Three legged inter section – Diamond inter change – Half clover leaf – clover leaf- Advantages- Disadvantages only.

08Hours

Module – V

Traffic Regulation and Control: Driver, vehicle and road controls – Traffic regulations – Traffic markings, Traffic signs, Traffic signals – Vehicle actuated and synchronized signals – Signals co-ordination. Webster's method of signal design, IRC method – Street lighting, Road side furniture's. Relevant problems on above.

Intelligent Transport System: Definition, Necessities, Application in the present traffic scenario.

08Hours

Course Outcomes:

On completion of this course, Students will be able to

- Know the objective and scope of traffic engineering and traffic characteristics.
- Interpret the traffic study and traffic flow theory.
- Conduct traffic studies and analyze traffic data

- Design traffic signal systems.
- Recognize traffic regulation and control and ITS.

Text Books:

1. L.R. Kadiyali, Traffic Engineering & Transport Planning ,Khanna Publishers, (Chapters, 1-6,8-11,13-17) ISBN-10: 817409220X; ISBN-13: 978-8174092205.

2. Khanna & Justo, Highway Engineering , Nemchand & Bros, Roorkee, (Chapter 5) ISBN: 978-81-85240-80-0.

Reference Books:

- 1. Salter RJ and Hounsell NB, "Highway, Traffic Analysis and Design"- Macmillan Press Ltd., London, (Chapter 1-4), ISBN: 9780333609033.
- 2. Matson T M, Smith W S, Hurd F W, "Traffic Engineering, Mc Graw Hill Book Co, NY, USA. ISBN 10: 0071761136 ISBN 13: 9780071761130
- 3. Drew D R," Traffic Flow Theory and Control", McGraw Hill Book Co, NY, USA. .. ISBN: 978-3-642-02604-1
- 4. Wohl and Martin, "Traffic System Analysis of Engineers and Planners"-Mcgraw Hill Book Co, New York, USA. ISBN 10: 0070712743 ISBN 13: 9780070712744.
- 5. Pignataro, "Traffic Engineering", John wiley & sons. ISBN: 978-1-118-76230-1
- 6. Nicholas J Garber, Lester A Hoel, "Traffic & Highway Engineering"- Third edition, Bill Stenquist. ISBN 0-534-38743-8.1
- 7. IRC: SP:41-1994, IRC SP:31-1992, IRC 43-1994, Indian Roads Congress
- 8. MoRTH "Type Designs for Intersections on National Highways"-Indian Roads Congress.
- 9. MORTH "Manual for Road Safety in Road Design"-Indian Roads Congress.

- 1. <u>https://en.wikipedia.org/wiki/Traffic_engineering(transportation)</u>
- 2. <u>http://www.faadooengineers.com/threads/7094-Traffic-Engineering-Ebooks-notes-pdf-ppt-download</u>
- 3. <u>http://nptel.ac.in/downloads/105101008/</u>
- 4. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4114883

Pre-Stressed	Concrete	Structures
---------------------	----------	------------

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
19CVT723	3-2-0-0	3	50:50	3 hours	PCC

Course Objectives: The students will be able to:

• Understand the concept of pre-stressing, devices for pre and post-tensioning.

• Identify different stress distribution due to pre stress and the imposed load.

- Calculate loss of pre stress and deflection in PSC members.
- Study the limit state of PSC beams in flexure and shear, anchorage zone (End block) stress.
- Design of pre-tensioned, post tensioned simple PSC beams, continues and cantilever beam.

Syllabus Module – I

Introduction: Definition and scope of pre stressed concrete, its applications, Types of pre-stressing system, High strength concrete and steel, Stress-Strain characteristics and properties.

Basic Principles of Pre-stressing: Fundamentals, Load balancing concept, Stress concept, centre of Thrust. Pre-tensioning and post-tensioning devices, tensioning methods and end anchorages. Ram pressure, extension and proof stress calculation during stressing operation.

Analysis of Sections for Flexure: Stresses in concrete due to pre-stress and loads, stresses in steel due to loads, Cable profiles.

Module – II

Losses of Pre-Stressing: Various losses encountered in pre-tensioning and post-tensioning methods, determination of jacking force.

Deflections: Deflection of a pre-stressed member – Short term and long term deflections, Elastic deflections under transfer of loads and due to different cable profiles. Deflection limits as per IS 1343. Effect of creep and deflection, load verses deflection curve, methods of reducing deflection.

Module – III

Design of beam: Flexure -IS Code recommendations –Ultimate flexural strength of sections Shear, shear resistance of sections, shear reinforcement. Limit state of serviceability control of deflections and cracking. Design of pre-tensioned and post-tensioned sections. Design of post tensioned slabs (PT Slab).

10Hrs

10Hrs

Module – IV

Design of End Block: Transmission of pre-stress in pre-tensioned member, transmission length, anchorage stress in post-tensioned members. Bearing stress and bursting tensile force, stresses in end block, IS code method, design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

10Hrs

Module – V

Cantilever Beams and Continuous Beams: Analysis and design of cantilever beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design. 10Hrs

Course Outcomes: Students will be able to

10Hrs

CV Scheme and Syllabus 2020-21

- Identify different pre-stressing techniques and apply principles of pre-stressing to field problem.
- Evaluate the nature of stresses in the flexural member and calculate different losses in PSC members.
- Compute the deflection of PSC members.
- Design the pre-tensioned and post-tensioned beams.
- Analyze composite and continues beam.

Text Books:

• Krishna Raju N.: "Pre-stressed Concrete", 5thEdition, Tata McGraw Hill,New

Delhi, 2007.ISBN:978-9387886209.

• Dayaratnam P.: "Pre-stressed Concrete Structures", 7th edition, Oxford and IBHPublications, New Delhi, 1996. ISBN:978-9386479778.

• Lin T.Y., Ned. Burns H.: "Design of Pre-stressed Concrete Structures", 3rd edition, John Wiley and Sons, New York, 1982. ISBN:978-9812531179.

Reference Books:

- Mallick S.K., Gupta A.P: "Pre-stressed Concrete", Oxford and IBH, New Delhi, 1983. ISBN: 978-9324527831.
- Natarajan V.: "Fundamentals of Pre-Stressed Concrete", 1976, B.I Publications, Bombay. ISBN: 978-9367312602.
- Libby J.R.: "Modern Pre-stressed Concrete", CBS Publishers, New Delhi, 1986. ISBN: 978-9376239543.
- IS: 1343-1980, Code of Practice For Prestressed Concrete, Bureau of Indian Standards, New Delhi, 1981.

- http://www.vtuupdates.com>vtunotes
- http://www.vidhayarthiplus.com
- http://www.iitg.ernet.in>qip>cd_cell>chapters

	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18CVT724	3:2:0:0	4	50:50	3 hours	PCC
Course Object					
The students wa	ill be able to:				
•	, formulate and so Loading.	olve engineering	problems of RC e	lements subjected	l to different
• Follow	a procedural know	vledge in design	ing and detailing v	various structural	RC elements.
• Impart t	he usage of codes	s for strength, se	rviceability and du	ırability.	
Provide	knowledge in an	alysis , design ai	nd detailing of RC	elements.	
		S	yllabus		
		Mo	odule – I		
Lavout Drawi	ng : General layou	t of building sho	owing, position of	columns, footing	s, beams and slabs
•	-	-	Slab floor system, o	-	
Dotailing of St	aircases: Dog leg	read and Open w	م		10 Hrs
Detailing of St	ancases. Dog leg		dule – II		101113
Detailing of Co	olumn footings: (ting (Square and R	ectangle)	
Design and deta	ailing of Rectange	alar Combined f	ooting slab and bea	am type.	10 Hrs
		Mo	dule – III		
Design and deta	ailing of Retainin		ver and counter for	t type).	
0	0		ngular water tank		ound and free at
	se and Rigid base			6 6	10 Hrs
_					
		Mo	dule – IV		
	plices, Column-c	olumn of same a	am, Beam-column and different section		
COLUMN					ittells.
COLUMN BA	SES. Slav vase a	nd gusseled base	е.		
COLUMN BA					10 Hrs
			e. dule – V		
Design and dra i) Bolt	wing of ed or welded plate	Mo	dule – V		
Design and dra i) Bolt ii) Roo	wing of ed or welded plate f Truss (Forces in	Mo	dule – V		10 Hrs
Design and dra i) Bolt ii) Roo Gan	wing of ed or welded plate f Truss (Forces in ttry girder	Mo	dule – V		
Design and dra i) Bolt ii) Roo	wing of ed or welded plate f Truss (Forces in ttry girder	Mo	dule – V		10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcor	wing of ed or welded plate f Truss (Forces in try girder nes:	Mo	dule – V		10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcon Students will be	wing of ed or welded plate f Truss (Forces in try girder nes:	Mo girder the members to b	dule – V be given)		10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcon Students will be • Underst	wing of ed or welded plate f Truss (Forces in atry girder nes: e able to and the design ph	Mo girder the members to b	dule – V e given) inciples.	exure, shear.	10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcon Students will be • Underst • Solve en • Demons	wing of ed or welded plate f Truss (Forces in atry girder nes: e able to and the design ph ngineering proble strate the procedu	Mo girder the members to b ilosophy and pr ms of RC eleme	dule – V be given)		10 Hrs 10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcon Students will be • Underst • Solve en • Demons Steel str	wing of ed or welded plate f Truss (Forces in atry girder nes: e able to and the design ph ngineering proble strate the procedu	Mo girder the members to b illosophy and pr ms of RC eleme ral knowledge i	dule – V be given) inciples. nts subjected to fle n design and detai		10 Hrs 10 Hrs
Design and dra i) Bolt ii) Roo Gan Course Outcon Students will be • Underst • Solve en • Demons Steel str	wing of ed or welded plate f Truss (Forces in atry girder nes: e able to and the design ph ngineering proble strate the procedu	Mo girder the members to b illosophy and pr ms of RC eleme ral knowledge i	dule – V be given) inciples. nts subjected to fle n design and detai		10 Hrs 10 Hrs

Distributors, 4th Edition (2016)

• S. S. Bhavikatti: "Design of RCC Structural Elements Vol-I", New Age International Publications, New Delhi, ISBN: 978-8122416930.

Reference Books:

- Neelam Sharma, "R.C.C.Design & Drawing", S.K. Kataria & Sons, Reprint edition (2013)
- P.C. Varghese, "Limit State Design of Reinforced Concrete", PHI Learning Private Limited, 2nd Edition (2008)
- V. L. Karve & Late S. R. Shaha, "Limit State Theory & Design of Reinforced Concrete (I.S. 456 2000)", Structures Publications (2014)
- S.N.Shinha: "Reinforced concrete Design" TMH Education Private Limited, ISBN: 978-9351342472.

- http://nptel.ac.in/courses/105105105/14
- https://youtu.be/pIdaC_I6H_M
- https://youtu.be/zVKf6hZfrhA
- <u>https://youtu.be/DjT5G6Klf1M</u>
- <u>https://youtu.be/0fTvE8aSsiE</u>
- <u>https://youtu.be/JwiHgkC-6Ic</u>
- https://youtu.be/WaAWYM6HDWs
- <u>https://youtu.be/AyRgeA65oI0</u>
- https://youtu.be/aTGeCoGkh3M
- https://youtu.be/AfHmpWlcqq4
- https://youtu.be/PDJPcQq3PZE
- https://youtu.be/wJWt0dcgafs
- https://youtu.be/8ATp13mOhvg
- https://youtu.be/hxakW1miEcM

Subsurface Exploration and Ground Improvement Techniques

Course Objectives: The students will be able to:

The students will be able to:

- Access ground condition through multidisciplinary sources and Implement various exploration methods to determine soil properties which helps in design
- Understand the dewatering techniques based on environmental context
- Select and apply appropriate techniques for ground improvement
- Suggest/propose suitable chemical stabilizers for ground improvement, through engineering practice and environmental context
- Apply the contextual knowledge to choose suitable type of geosynthetics for ground improvement and filtration.

Syllabus

Module – I

SUBSURFACE EXPLORATION: Introduction, Importance of exploration, Methods of exploration: Boring, sounding tests. Soil samples-undisturbed, disturbed and representative samples, Soil samplers and sampling, Number and disposition of trial pits and boring, Depth of exploration, Field tests: SPT, SCPT, DCPT, plate load test, Geo-physical methods, Borehole logs, Site investigation report.

Module – II

GROUND IMPROVEMENT: Introduction, Need and objectives for ground improvement, Classification of improvement techniques, suitability and feasibility. Engineering properties of weak and compressible deposits.

HYDRAULIC MODIFICATIONS: Objectives, Techniques, Dewatering methods. Drains, different types of drains.

Vertical drains, Sand drains, Drainage of slopes, Electro kinetic dewatering, Preloading.

Module – III

MECHANICAL MODIFICATION: Introduction, Principles of densification, Compaction- Shallow and deep compaction, compaction quality control. Effect of compaction on engineering properties - compressibility, permeability, and liquefaction potential.

DYNAMIC MODIFICATIONS: Introduction, Need and objectives, Dynamic Consolidation, Compaction by blasting, vibratory probe, Vibroflotation.

10 Hrs

10 Hrs

10 Hrs

Module – IV

CHEMICAL MODIFICATION: Introduction, Methods of Chemical stabilization, cement stabilization, sandwich technique, admixtures. Hydration – effect of cement stabilization on permeability, Swelling and shrinkage and strength and deformation characteristics. Criteria for cement stabilization, Stabilization using Fly ash.

Lime stabilization – suitability, process, criteria for lime stabilization. Other chemicals like chlorides, hydroxides, lignin and hydrofluoric acid. Bitumen, tar or asphalt in stabilization.

10 Hrs

Module – V

GROUTING: Introduction, Effect of grouting. Chemicals and materials used. Types of grouting. Grouting procedure, Applications of grouting.

GEOSYNTHETICS: Introduction, Geosynthetic types, properties of Geosynthetics – materials and fiber properties, Hydraulic properties, Durability; Applications of Geosynthetics – Reinforcement, Separation, Filtration and Fluid Transmission. **10 Hrs**

Course Outcomes:

Students will be able to,

- Apply the knowledge of exploration methods to interpret field and laboratory data.
- Identify dewatering techniques based on field conditions
- Conduct investigations on problems and suitable techniques in stabilization
- Suggest/propose suitable chemical stabilizers based on site condition
- Choose suitable type of geosynthetics for ground improvement and filtration process.

Text Books:

- Peter.G.Nicholson, "Soil improvement and ground modification methods", Butterworth-Heinemann Ltd, 1st Edition-22 Aug 2014, ISBN: 978-0-12-408076-8
- 2. Dr. P.Purushotham Raju ,"Ground Improvement techniques", Laxmi Publications,2000, ISBN: 978-8131808573
- 3. Manfred R. Hausmann," Engineering principles of ground modification", McGraw-Hill Publishing Co.1990, ISBN: 978-0071007405
- 4. Nihar Ranjan Patra,"Ground Improvement techniques", S.Chand (G/L) & Company Ltd, 2012, ISBN: 978-9325960015.

Reference Books:

- Jie Han,"Principles and Pratice of Ground Improvement", John Wiley & Sons, edition-28 july 2015, ISBN: 978-1118259917
- Ingles. O.G and Metcalf J.B., 'Soil stabilisation –Principles and Practice'', Butterworths. London 1972, ISBN: 978-0409482157
- M.C.Alfaro,"Improvement Techniques of Soft Ground in Subsiding & Lowland",CRC Press,1994,ISBN: 978-9054101536
- J.M.Galvin,"Groung Engineering ", Springer,2016 ,ISBN: 978-3319250038

- www.sciencedirect.com/science/book/9780124080768
- https://www.bauer.de>bma>info_80_e
- thecounstructor.org/geotechnical/latest-trends-in-ground-improvement-techniques/1836/
- https:// <u>www.nptel.ac.in/courses/105104034</u>

Basics of Earthquak	e Engineering
----------------------------	---------------

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18CVT726	3-2-0-0	3	50:50	3 hours	PEC

Course Objectives:

The students will be able to learn:

- Fundamentals of engineering seismology
- Fundamental of structural dynamics
- Irregularities in building which are detrimental to its earthquake performance
- Different methods of computation seismic lateral forces for framed and masonry structures
- Earthquake resistant design requirements for RCC and Masonry structures
- Relevant clauses of IS codes of practice pertinent to earthquake resistant design of structures.

Syllabus Module – I

Engineering Seismology: Terminologies (Focus, Focal depth, Epicentre, etc.); Causes of Earthquakes; Theory of plate tectonics; Types and characteristics faults; Classification of Earthquakes; Major past earthquakes and their consequences; Types and characteristics of seismic waves; Magnitude and intensity of earthquakes; local site effects; Earthquake ground motion characteristics: Amplitude, frequency and duration; Seismic zoning map of India; (Problems on computation of wave velocities. Location of epicentre, Magnitude of earthquake).

Module – II

Response Spectrum: Basics of structural dynamics; Free and forced vibration of SDOF system; Effect of frequency of input motion and Resonance; Numerical evaluation of response of SDOF system (Linear acceleration method), Earthquake Response spectrum: Definition, construction, Characteristics and application; Elastic design spectrum.

10 Hrs

10 Hrs

Module – III

Seismic Performance of Buildings and Over View of IS-1893: Types of damages to building observed during past earthquakes; Plan irregularities; mass irregularity; stiffness irregularity; Concept of soft and weak storey; Torsional irregularity and its consequences; configuration problems; continuous load path; Architectural aspects of earthquake resistant buildings; Lateral load resistant systems. Seismic design philosophy; Structural modelling; Code based seismic design methods.

10 Hrs

Module – IV

Determination of Design Lateral Forces: Equivalent lateral force procedure and dynamic analysis procedure. Step by step procedures for seismic analysis of RC buildings using Equivalent static lateral force method and response spectrum methods (maximum of 4 storeys and without infill walls).

10 Hrs

Module-V

Earthquake Resistant Analysis and Design of RC Buildings: Typical failures of RC frame structures, Ductility in Reinforced Concrete, Design of Ductile Reinforced Concrete Beams, Seismic Design of Ductile Reinforced Concrete column, Concept of weak beam-strong column, Detailing of Beam-Column Joints to enhance ductility, Detailing as per IS-13920. Retrofitting of RC buildings. **Earthquake Resistant Design of Masonry Buildings:** Performance of Unreinforced, Reinforced,

Infill Masonry Walls, Box Action, Lintel and sill Bands, elastic properties of structural masonry, lateral load analysis, Recommendations for Improving performance of Masonry Buildings during earthquakes; Retrofitting of Masonry buildings.

Course Outcomes:

Students will be able to:

- Acquire basic knowledge of engineering seismology.
- Develop response spectra for a given earthquake time history and its implementation to estimate response of a given structure.
- Understanding of causes and types of damages to civil engineering structures during different earthquake scenarios.
- Analyse multi-storied structures modelled as shear frames and determine lateral force distribution due to earthquake input motion using IS-1893 procedures.
- Comprehend planning and design requirements of earthquake resistant features of RCC structures thorough exposure to different IS-codes of practices.

Text Books:

- Pankaj Agarwal and Manish Shrikande, "Earthquake resistant design of structures", PHI India.
- S.K. Duggal, "Earthquake Resistant Design of Structures", Oxford University Press
- Anil K. Chopra, "Dynamics of Structures: Theory and Applications to Earthquake Engineering", Pearson Education, Inc.
- T. K. Datta, "Seismic Analysis of Structures", John Wiley & Sons (Asia) Ltd.

Reference Books:

- David Dowrick, "Earthquake resistant design and risk reduction", John Wiley and Sons Ltd.
- C. V. R. Murty, Rupen Goswami, A. R. Vijayanarayanan & Vipul V. Mehta, "Some Concepts in Earthquake Behaviour of Buildings", Published by Gujarat State Disaster Management Authority, Government of Gujarat.
- IS-13920 2016, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, BIS, New Delhi.
- IS-1893 2016, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1, BIS, New Delhi.
- IS- 4326 2013, Earthquake Resistant Design and Construction of Buildings, BIS, New Delhi.
- IS-13828 1993, Indian Standard Guidelines for Improving Earthquake Resistance of Low Strength Masonry Buildings, BIS, New Delhi.
- IS-3935 1993, Repair and Seismic Strengthening of Buildings-Guidelines, BIS, New Delhi.

Concrete Laboratory

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18CVL76	1-0-2-0	2	50:50	3 hours	PCC

Course Objectives:

The students will be able to:

- Characterize cement properties by conducting various tests on cement.
- Design concrete mixes based on properties of material and evaluate the workability of fresh concrete.
- Describe mechanical behavior of hardened concrete.
- Characterize aggregates based on mechanical properties.
- Evaluate bitumen properties for its suitability for various conditions.
- Design bituminous mix based on Marshall mix properties.

Syllabus

Tests on Cement & Concrete

- 1. Test on Specific gravity and fineness of cement
- 2. Test on Normal consistency and initial and final setting time of cement.
- 3. Test on Soundness of cement
- 4. Test on compressive strength of mortar.
- 5. Mix design of concrete-Fresh concrete: Slump, compaction factor, vee-bee test, flow table test.
- 6. Properties of hardened concrete-Compressive strength and flexural strength, Split tensile strength, relation between them and codal provision.
- 7. Non-destructive test on hardened concrete using rebound hammer
- 8. Non-destructive test on hardened concrete using Ultrasonic pulse velocity.
- 9. Permeability and water absorption test on concrete.

Course Outcomes: Students will be able to

- Determine the properties of cement by conducting basic test.
- Define the workability of fresh concrete.
- Estimate the strength of hardened Concrete by destructive and non destructive test.
- Examine the strength of aggregate material as per codal provisions
- Measure the physical properties and stability of bituminous materials and mixes by conducting tests.

Text Books:

- M.S Shetty, "Concrete Technology", S. Chand & Co. Ltd, New Delhi.
- Mehta P.K, "Properties of Concrete", Tata McGraw Hill Publications, New Delhi.
- S.K Khanna, C.E.G.Justo, and A.Veeraragavan, "Highway Material and Pavement Testing

Reference Books:

- Neville AM, "Properties of Concrete", ELBS Publications, London.
- Relevant BIS codes, Relevant IS Codes and IRC Codes.
- IS: 2386 Methods of tests for aggregate for concrete.
- IS: 383 Specifications for fine & coarse aggregate from natural sources for concrete
- IS: 516BXB JWJJS– Methods of test for strength of concrete.

- <u>http://elearning.vtu.ac.in</u>
- www.sginstitute.in/downloads/civil.../manual_ConcreteTech

Geotechnical Engineering Laboratory L-T-P-S Exam Course **Course Code** Credits **Exam marks** (Hrs/week) Duration Type 2 50:50 18CVL77 1-0-2-0 3 hours PCC **Course Objectives:** The students will be able to: Carry out laboratory tests and to identify soil as per IS code. • Perform laboratory tests to determine index properties of soil. Perform tests to determine shear strength and consolidation characteristics of soil. • Prepare the consolidated soil report. **Syllabus** LIST OF EXPERIMENTS 1. Field Identification of soil; gravel type, sand type, silt type and clay types soils. Tests for determination of Specific gravity (for coarse and fine grained soils) and Water content (Oven drying method). 2. Grain size analysis of soil sample (sieve analysis). 3. In situ density by core cutter and sand replacement methods. 4. Consistency Limits - Liquid Limit (Casagrande's and Cone Penetration Methods), plastic limit and shrinkage limit. 5. Standard Proctor Compaction Test and Modified Proctor Compaction Test. 6. Coefficient of permeability by constant head and variable head methods. 7. Strength Tests. a. Unconfined Compression Test. b. Direct Shear Test. c. Triaxial Compression Test (Unconsolidated undrained test). 8. Determination of Consolidation Test. 9. a) Demonstration of miscellaneous equipment's such as Augers, Samplers, Rapid Moisture meter, Proctor's needle. b) Demonstration of Hydrometer Test and relative density of sands. c) Demonstration of CBR value and Vane shear test. 10. Preparing a consolidated soil report of Index properties and Strength properties of soil. **Course Outcomes:** Students will be able to Physical and index properties of the soil. Classify based on index properties and field identification. ٠ OMC and MDD, plan and assess field compaction program. • Consolidation parameters to assess deformation characteristics. • • Strength characteristics and prepare a soil report. **Text Books**: Soil Mechanics and Foundation Engg.- Punmia B.C.(2005), 16th Edition Laxmi Publications • Co., New Delhi.

- Soil Testing for Engineers- Lambe T.W., Wiley Eastern Ltd., New Delhi.
- Manual of Soil Laboratory Testing- Head K.H., (1986)- Vol.I, II, III, Princeton Press, London.
- Dr. K.R.Arora, "Soil Mechanics & Foundation Engineering", Standard Publishers & Distributors, New Delhi.

Reference Books:

- Engineering Properties of Soil and Their Measurements- Bowles J.E. (1988), McGraw Hill Book Co. New York.
- BIS Codes of Practice: IS 2720(Part-3/Sec. 1) 1987; IS 2720 (Part 2)- 1973; IS 2720 (Part 4) 1985; IS 2720 (Part 5) 1985; IS 2720 (Part 6) 1972; IS 2720 (Part 7) 1980; IS 2720 (Part 8) 1983; IS 2720 (Part 17) –1986; IS 2720 (Part 10) 1973; IS 2720 (Part 13) 1986; IS2720 (Part 11) 1971; IS2720 (Part 15) 1986; IS 2720 (Part 30) 1987; IS 2720 (Part 14) 1977; IS 2720 (Part 14) 1983; IS 2720 (Part 28) 1974; IS 2720 (Part 29) –1966, IS 2720 (Part-60) 1965

- http://www.eng.fsu.edu/~tawfiq/soilmech/lecture.html
- <u>http://aboutcivil.org/soil-mechanics/soil-mechanics-1-high.pdf</u>

Smart Cities	and App	lications	of IOT
---------------------	---------	-----------	--------

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18EET731	3-2-0-0	3	50:50	3 hours	PEC

Course Objectives:

The students will be able to learn:

- Purpose of Smart Cities and their role in nation development.
- Modern techniques to enhance the living standards.
- Problems faced by traditional cities and solutions.
- Different modern techniques to tackle the traditional problems.
- Use of IOT in Civil Engineering.

Syllabus

Module – I

Introduction: Smart City: Concepts, Challenges, Evolution of smart city; Innovation economy (Innovation in industries, clusters, districts of a city; Knowledge workforce: Education and employment; Creation of knowledge -intensive companies). 100 smart city documentation of GOI. **Urban Infrastructure:** Concepts of Sustainable development, Components of Urban Infrastructure,

Module – II

Planning interventions of Urban Infrastructure: Understanding Inclusive Planning: Definition and components; urban consultations; basic principles of urban consultation, process of urban consultations; urban strategic planning, good urban governance, subsidiarity, equity, efficiency, transparency and accountability, civic engagement and citizenship, security; valuing difference and working with diversity; liveable cities. 10 Hrs

Module – III

Applications of IoT in Smart Cities: Smart Infrastructure, Air Quality Management, Traffic Management, Smart Parking, Smart Waste Management, Street lighting :Streetlights - into next-generation intelligent lighting platforms, Pervasive wireless connectivity, Open data, Trustable Security, Flexible monetization schemes.

IoT use cases for smart cities: Road traffic, Public transport, Utilities etc.,

10 Hrs

10 Hrs

Module – IV

Planning interventions: Inclusive zoning, development and building regulations, Slum Improvement; drafting strategic urban development plans – objectives and key actors; planning framework for actions, process of drafting the plan, key considerations. Urban design and decision-making; city transport for all; water supply and sanitation, urban disaster management, management through decentralization

Key Drivers for IoT Applications in Smart Cities: Cost, Efficiency, Resource reduction, etc., Examples of IoT Applications for Smart Cities

10 Hrs

Smart urban Infrastructure : Transport, Energy/ Utilities, protection of the environment and safety; Governance (Administration services to citizens, participatory and direct democracy, services to the citizen, quality of life).

Module – V

Examples of smart cities : Chhattisgarh City, New York City, Amsterdam Smart City, Copenhagen Smart City 10 Hrs

Course Outcomes: Students will be able to:

- Apply the latest technology enabled systems for the management of cities.
- Analyse the dynamic behavior of the urban system in context to physical appearance and by focusing on representations, properties and impact factors.
- Develop the urban infrastructure systems to benefit the citizens, based on smart cities concept as responsive cities.

Text Books:

- Jo Beall (1997); "A city for all: valuing differences and working with diversity"; Zed books limited, London (ISBN: 1-85649-477-2)
- UN-Habitat; "Inclusive and sustainable urban planning: a guide for Municipalities";Volume 3: Urban Development Planning (2007); United Nations Human Settlements Programme (ISBN: 978-92-1-132024-4)
- Arup Mitra; "Insights into inclusive growth, employment and wellbeing in India"; Springer (2013), New Delhi (ISBN: 978-81-322-0655-2)

Reference Books:

- William J. V. Neill (2004); "Urban Planning and cultural identity"; Routledge, London (ISBN: 0-415-19747-3)
- John S. Pipkin, Mark E. La Gory, Judith R. Balu (Editors); "Remaking the city:Social science perspective on urban design"; State University of New York Press, Albany (ISBN: 0-87395-678-8)
- Giffinger, Rudolf; Christian Fertner; Hans Kramar; Robert Kalasek; Nataša Pichler-Milanovic; Evert Meijers (2007). "Smart cities – Ranking of European mediumsized cities". Smart Cities. Vienna: Centre of Regional Science
- "Draft Concept Note on Smart City Scheme". Government of India Ministry ofUrban Development (http://indiansmartcities.in/downloads/CONCEPT_NOTE_-3.12.2014__REVISED_AND_LATEST_.pdf)

GROUND WATER HYDROLOGY

Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18HOE743	3-2-0-0	3	50:50	3 hours	PEC

Course Objectives:

The students will be able to learn:

- To characterize the properties of ground water and aquifers.
- To quantify the ground water flow.
- To locate occurrence of ground water and augment ground water resources.
- To synthesize ground water development methods.

	6	1
		Syllabus
		Module – I

INTRODUCTION: Importance. Vertical distribution of sub-surface water. Occurrence in different types of rocks and soils. Definition of aquifer, Aquifuge, Aquitard and Aquiclude. Confined and unconfined aquifers.

AQUIFER PROPERTIES: Aquifer parameters – Specific yield, Specific retention, Porosity, Storage coefficient, derivation of the expression. Determination of specific yield. Land subsidence due to ground water withdrawals.

Module – II

DARCY"S LAW AND HYDRAULIC CONDUCTIVITY: Introduction. Darcy"s law. Hydraulic conductivity. Coefficient of permeability and Intrinsic permeability, Transmissibility, Permeability in Isotropic, Unisotropic layered soils. Steady one dimensional flow, different cases with recharge. **10 Hrs**

Module-III

WELL HYDRAULICS – STEADY FLOW: Introduction. Steady radial flow in confined and unconfined aquifers. Pumping tests. 10 Hrs

Module – IV

WELL HYDRAULICS – UNSTEADY FLOW: Introduction. General equation derivation; Theis method, Cooper and JaCob method, Chow's method. Solution of unsteady flow equations.

GROUND WATER DEVELOPMENT: Types of wells. Methods of constructions. Tube well design. Dug wells. Pumps for lifting water: Working principles, Power requirements.

10 Hrs

Module – V

GROUND WATER EXPLORATION: Seismic method, Electrical resistivity method, Bore hole geo-physical techniques; Electrical logging, Radio active logging, Induction logging, Sonic logging and Fluid logging.

GROUND WATER RECHARGE AND RUNOFF: Recharge by vertical leakage. Artificial recharge. Ground water runoff. Ground water budget.

10 Hrs

Course Outcomes:

After studying this course, students will be able to:

- Find the characteristics of aquifers.
- Estimate the quantity of ground water by various methods.
- Locate the zones of ground water resources.
- Select particular type of well and augment the ground water storage.

10 Hrs

Text Books:

- Ground Water- H.M. Raghunath, Wiley Eastern Limited, New Delhi.
- Ground Water Hydrology- K. Todd, Wiley and Sons, New Delhi.
- Numerical Ground Water Hydrology- A.K. Rastogi, Penram, International Publishing (India), Pvt. Ltd., Mumbai.

Reference Books:

- Ground Water Hydrology- Bower H.- McGraw Hill, New Delhi.
- Ground Water and Tube Wells- Garg Satya Prakash, Oxford and IBH, New Delhi.
- Ground Water Resource Evaluation- W.C. Walton, McGraw Hill Kogakusha Ltd., New Delhi.
- Water wells and Pumps Michel D.M., Khepar. S.D., Sondhi. S.K., McGraw Hill Education 2nd Edition.

	Small a	nd Medium	Enterprises ma	nagement	
Course Code	L-T-P-S (Hrs/week)	Credits	Exam marks	Exam Duration	Course Type
18HOE751	3-2-0-0	3	50:50	3 hours	PEC
Course Objecti	ves:				
	ll be able to learn: c understanding c		oncepts and factors	s of Entrepreneurs	ship and MSME.
		S	Syllabus		
Distinction betw Entrepreneurship	een Entrepreneur	of Entrepreneur and Manager, IcLell and and and significanc		and Entrepreneurs	ship, Theories of
		Μ	odule – II		
			ment assessment: g effective business		economic, social, 10
		Ma	odule – III		
Growth and De	evelopment of En	ntrepreneuria	sector opportunity. I Venture: Strategi are capital and their		nerging venture, 10 Hrs
		Ma	odule – IV		
evaluation of fe business throug Industries	of the nature of the asibility of buyin h franchising, Lo lifferent forms of	ne business uni ng an existing ocation strateg	t : Micro, Small ar enterprise, setting	g up a new vent gistration with St	ure or starting the tate Directorate of
		M	odule – V		10 115
perspective, Suc	cession policy, p	p: Business Su	ccession and contin ovation and change	• •	Business 10 Hrs
Course Outcom Students will be					
• Analyse	-	ved in assessme	le entrepreneur plan ent of business oppo usiness unit.		

Text Books:

- Wickham, Phillip A (1998); Strategic Entrepreneurship, Pitman, UK.
- Shukla, MB, (2011), Entrepreneurship and Small Business Management, Kitab Mahal, Allahabad

Reference Books:

- Hill, Michal A., Inland Durama R et al; Strategic Entrepreneurship: Creating a New Mindset, Blackwell Publishers, Oxford.
- Zenas Block and Ian C Macmillan, Corporate Venturing, Harvard Business School Press, Boston
- Sahay A., V. Sharma (2008), Entrepreneurship and New Venture Creation, Excel Books, New Delhi.
- Lall, Sahai (2006), Entrepreneurship, Excel Books, New Delhi.

CV Scheme and Syllabus 2020-21